Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Related tags

Deep LearningBread
Overview

Low-light Image Enhancement via Breaking Down the Darkness

by Qiming Hu, Xiaojie Guo.

1. Dependencies

  • Python3
  • PyTorch>=1.0
  • OpenCV-Python, TensorboardX
  • NVIDIA GPU+CUDA

2. Network Architecture

figure_arch

3. Data Preparation

3.1. Training dataset

  • 485 low/high-light image pairs from our485 of LOL dataset, each low image of which is augmented by our exposure_augment.py to generate 8 images under different exposures.
  • To train the MECAN (if it is desired), 559 randomly-selected multi-exposure sequences from SICE are adopted.

3.2. Tesing dataset

The images for testing can be downloaded in this link.

4. Usage

4.1. Training

  • Multi-exposure data synthesis: python exposure_augment.py
  • Train IAN: python train_IAN.py -m IAN --comment IAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche
  • Train ANSN: python train_ANSN.py -m1 IAN -m2 ANSN --comment ANSN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth
  • Train CAN: python train_CAN.py -m1 IAN -m3 FuseNet --comment CAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth
  • Train MECAN on SICE: python train_MECAN.py -m FuseNet --comment MECAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche
  • Finetune MECAN on SICE and LOL datasets: python train_MECAN_finetune.py -m FuseNet --comment MECAN_finetune --batch_size 1 --val_interval 1 --num_epochs 500 --lr 1e-4 --no_sche -mw ./checkpoints/FuseNet_MECAN_for_Finetuning_404.pth

4.2. Testing

  • [Tips]: Using gamma correction for evaluation with parameter --gc; Show extra intermediate outputs with parameter --save_extra
  • Evaluation: python eval_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[eval] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth
  • Testing: python test_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth
  • Remove NFM: python test_Bread_NoNFM.py -m1 IAN -m2 ANSN -m3 FuseNet --mef -a 0.10 --comment Bread+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth

4.3. Trained weights

Please refer to our release.

5. Quantitative comparison on eval15

table_eval

6. Visual comparison on eval15

figure_eval

7. Visual comparison on DICM

figure_test_dicm

8. Visual comparison on VV and MEF-DS

figure_test_vv_mefds

You might also like...
Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

An official implementation of
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Official code implementation for
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

StyleGAN2 - Official TensorFlow Implementation
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

 Old Photo Restoration (Official PyTorch Implementation)
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Official implementation of
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

Official PyTorch implementation of Spatial Dependency Networks.
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Comments
  • How to create data?

    How to create data?

    I have download datasets, but I have no idea about how to creat data. I read the code and found that I need eval/images eval/targets train/images_aug train/targets to train. Could you please tell me how to perpare these for folder? thanks so much!

    opened by Adolfhill 4
Owner
Qiming Hu
Qiming Hu
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022