The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo

Overview

Subformer

This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while reducing parameters in generative Transformers from 25% ~ 70%. The Subformer consists of the following two techniques:

  1. Sandwich-style parameter sharing, in which we share all the layers in a block except the first and last. This allows us the use the central shared layers --"sandwich module" -- as a large representation learner (similar to BERT vs ALBERT) while the input and output model layers are able to focus on more specific representations for token prediction/generation while maintaining performance.
  2. For our sequence to sequence tasks, we also introduce SAFE (self-attentive factorized embeddings), which help us reduce embedding parameters significantly, while still retaining performance.

If you used this code or found our work useful, please cite:

@inproceedings{reid2021subformer,
    title = {{S}ubformer: {E}xploring {W}eight {S}haring for {P}arameter {E}fficiency in {G}enerative {T}ransformers},
    author = {Machel Reid and Edison Marrese-Taylor and Yutaka Matsuo},
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
}

Requirements and Installation

(As this code is based on fairseq, some installation instructions are taken straight from their README)

  • PyTorch version >= 1.5.0
  • Python version >= 3.6
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • To install and develop locally:
git clone https://github.com/machelreid/subformer
cd subformer
pip install --e ./

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./
  • For faster training install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Training

Machine Translation

python train.py $DATA_BIN --arch transformer_wmt_en_de \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --lr 5e-4 \
    --warmup-init-lr 1e-7 --stop-min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates 10000 \
    --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 --task translation \
    --max-tokens 8192 --weight-decay 0.01 --dropout 0.2 --encoder-layers 6 --encoder-embed-dim 512 \
    --decoder-layers 6 --decoder-embed-dim 512 --fp16 --max-source-positions 10000 \
    --max-target-positions 10000 --max-update 200000 --seed 1 \
    --save-dir $CHECKPOINT_DIR --share-all-embeddings \
    --share-encoder-parameters-sandwich --share-decoder-parameters-sandwich \ #for sandwich-style parameter sharing
    --reduction-dim 320 #for SAFE embeddings

Generation

python generate.py --path $CHECKPOINT --gen-subset $SPLIT --beam 5 --lenpen $LENPEN --batch-size 400 --remove-bpe

CNN-DM Summarization

fairseq-train $DATA_BIN \
   --share-decoder-input-output-embed \
   --max-update 30000 \
   --optimizer adam --adam-betas '(0.9, 0.98)' --skip-invalid-size-inputs-valid-test \
   --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 10000 --lr 0.0005 \
   --stop-min-lr 1e-09 --clip-norm 0.1 --dropout 0.3 --weight-decay 0.0 \
   --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --update-freq 7 --attention-dropout 0.2 \
   --max-tokens 8192 --arch transformer_wmt_en_de --seed 1 --warmup-init-lr 1e-7 \
   --source-lang source_bpe --target-lang target_bpe --save-dir $CHECKPOINT_DIR --no-epoch-checkpoints --keep-best-checkpoints 10 --truncate-source --max-source-positions 512 --share-encoder-parameters-sandwich --share-decoder-parameters-sandwich --sandwich-embed-dim 1024 --sandwich-ffn-embed-dim 3072 --reduction-dim 256

Generation

fairseq-generate $DATA_BIN --task translation --gen-subset $SPLIT --batch-size 32 --path $CHECKPOINT --remove-bpe  --min-len 55 --beam 5 --max-len-b 140 --no-repeat-ngram-size 3 --lenpen $LENPEN -s source_bpe -t target_bpe --truncate-source --max-source-positions 512

Note that the min,max len parameters can be tuned for better performance

For post processing and ROUGE calculation feel free to take a look at this.

Citation

Please cite as:

@inproceedings{reid2021subformer,
    title = {{S}ubformer: {E}xploring {W}eight {S}haring for {P}arameter {E}fficiency in {G}enerative {T}ransformers},
    author = {Machel Reid and Edison Marrese-Taylor and Yutaka Matsuo},
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
}
Owner
Machel Reid
Researcher at University of Tokyo. Research Intern at CMU. Masason Foundation Scholar. Won the Rakuten Hackathon 2018.
Machel Reid
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Extract city and country mentions from Text like GeoText without regex, but FlashText, a Aho-Corasick implementation.

flashgeotext ⚡ 🌍 Extract and count countries and cities (+their synonyms) from text, like GeoText on steroids using FlashText, a Aho-Corasick impleme

Ben 57 Dec 16, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
Open-source offline translation library written in Python. Uses OpenNMT for translations

Open source neural machine translation in Python. Designed to be used either as a Python library or desktop application. Uses OpenNMT for translations and PyQt for GUI.

Argos Open Tech 1.6k Jan 01, 2023
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023