NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess

Overview

Project 3: Web APIs & NLP

Problem Statement

How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration?

The goal of the project is to see how these two ideologically similar subreddits perceive Biden and his term as president so far.

Success in this project isn't to necessarily develop a model that accurately predicts consistently, but rather to convey what issues these two ideologies care about and the overall sentiment both subreddits have regarding Biden. Considering a lot of this information will be rather focused on EDA, it's hard to necessarily judge the success of this project on the individual models created, rather the success of this project will be determined primarily in the EDA, Visualization, and Presentation sections of the actual project. With that being said however, I will still use a wide variety of models to determine the predictive value of the data I gathered.

Hypothesis: I believe that the two subreddits will differ significantly on what issues they discuss and their sentiment towards Biden, I think because of these differences a model can be made that can accurately predict which post belongs to who. Primarily, I will be focusing on the differences between these subreddits in sentiment and words used.

Data Collection

When collecting data, I initially didn't have the problem statement in mind necessarily before I started. When I began data collecting, I knew I wanted to do something political specifically on the Biden admin post innaguration but I really wanted to go through the process experimenting with different subreddits which made for an interesting situation.

I definitely learned a lot more about the API going into the data collection process blind,such as knowing to avoid deleted posts by excluding "[deleted]" from the selftext among other things, especially about using score and created_utc for gathering posts. I would say the most difficult process was just finding subreddits and then subsequently seeing if they have enough posts while trying to construct different problem statements using the viable subreddits.

At the end, I decided on just choosing r/neoliberal and r/libertarian, there might've been easier options for model creation but personally, I found it a lot more interesting especially since I already browse r/neoliberal fairly frequently so I was invested in the analysis.

Data Cleaning and EDA

When performing data cleaning and EDA, I really did these two tasks in two seperate notebooks. My logistic regression notebook and in my notebook dedicated to EDA and data cleaning. The reason for that being, I initially just had the logistic regression notebook but then wanted to do further analysis on vectorized sets so I created it's own notebook for that while still at times referencing ideal vectorizer parameters I found in my logistic regression notebook.

Truth be told, I did some cleaning in the data gathering notebook, just checking if there were any duplicates or if there were any oddities that I found and I didn't find much, there might have been a few removed posts that snuck in to my analysis but truth be told, it wasn't anything warranting an editing of my data gathering techniques or anything that would stop me from using the data I already gathered.

EDA primarily was just trying to find words that stuck out using count vectorizers, luckily, that was fairly easy to do considering the NLP process came fairly naturally to me. I used lemmatizers for model creation but I rarely used it for my actual EDA, I primarily just used a basic tokenizer without any added features. The bulk of my presentation directly comes from this and domain knowledge where I can create conclusions from the information gathered from this EDA process. EDA helped present a narrative that I was able to fully formulate with my domain knowledge which then resulted in the conclusions found in my presentation.

Another part of EDA that was critical, was the usage of sentiment analysis to find the difference in overall tone between the two subreddits on Biden, this was especially important in my analysis as it also ended up being apart of my preprocessing as well. Sentiment analysis was used in my presentation to present the differences in tone towards Biden but also emphasize the amount of neturality in the posts themselves, this is due primarily to the posts being titles of politically neutral news titles or tweets.

Preprocessing and Modelling

Modelling was a very tenuous process and Preprocessing as well because a lot of it was very memory intensive which resulted in a lot of time spent baby-sitting my laptop but ultimately it provided a lot of valuable information not only on the data I was investigating but also on the models I was using. I used bagging classifiers, logistic regression models, decision trees, random forest models, and boosted models. All of these I had to very mixed success but logistic regression was the one I had the most consistency with, especially with self text exclusive posts. Random forest, decision trees, and boosted models, I all had high expectations for but was not as consistently effective as the logistic regression models. Due to general model underperformance, I will be primarily talking about the logistic regression models I created in the logreg notebook as I had dedicated the most time finetuning those models and had generally more consistent performance with those models than I did others.

I specifically had massive troubles with predicting neoliberal posts while Libertarian posts, I generally managed a decent rate at. My specificity was a lot better than my sensitivity. When I judged my model's ability to predict, I looked at self-text, title-exclusive, and total text. This allowed me to individually look at what each model was good at predicting and also what data to gather the next time I interact with this API.

My preprocessing was very meticulous, specifically experimenting with different vectorizer parameters when using my logistic regression model. Adjustment of parameters and the addition of sentiment scores to try and help the model's performance. Adjusting the vectorizer parameters such as binary and others were heavily tweaked depending on the X variable used (selftext, title, totaltext).

Conclusion

When analyzing this data, it is clear that there are three key takeaways from my modeling process and EDA stage.

  1. The overwhelming neutrality in the text (specifically the title) itself, can hide the true opinions of those in the subreddit.

  2. Predictive models are incredibly difficult to perform on these subreddits in particular and potentially other political subreddits.

  3. The issues in which the subreddits most differ on, is primarily due to r/Libertarian focusing more on surveillance and misinformation in the media while r/Neoliberal is concerned with global politics, climate, and sitting senate representatives.

  4. They both discuss tax, covid, stimulus, china and other current topics relatively often

Sources Used

Britannica Definition of Libertarianism

Neoliberal Project

Stanford Philosophy: Libertarianism

Stanford Philosophy: Neoliberalism

Neoliberal Podcast: Defining Neoliberalism

r/Libertarian

r/neoliberal

Owner
Adam Muhammad Klesc
Hopeful data scientist. Currently in General Assembly and taking their data science immersive course!
Adam Muhammad Klesc
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

farisalasmary 65 Sep 21, 2022
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
I can help you convert your images to pdf file.

IMAGE TO PDF CONVERTER BOT Configs TOKEN - Get bot token from @BotFather API_ID - From my.telegram.org API_HASH - From my.telegram.org Deploy to Herok

MADUSHANKA 10 Dec 14, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021