Neural Tangent Generalization Attacks (NTGA)

Overview

Neural Tangent Generalization Attacks (NTGA)

ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation

Stars Forks Last Commit License

Overview

This is the repo for Neural Tangent Generalization Attacks, Chia-Hung Yuan and Shan-Hung Wu, In Proceedings of ICML 2021.

We propose the generalization attack, a new direction for poisoning attacks, where an attacker aims to modify training data in order to spoil the training process such that a trained network lacks generalizability. We devise Neural Tangent Generalization Attack (NTGA), a first efficient work enabling clean-label, black-box generalization attacks against Deep Neural Networks.

NTGA declines the generalization ability sharply, i.e. 99% -> 15%, 92% -> 33%, 99% -> 72% on MNIST, CIFAR10 and 2- class ImageNet, respectively. Please see Results or the main paper for more complete results. We also release the unlearnable MNIST, CIFAR-10, and 2-class ImageNet generated by NTGA, which can be found and downloaded in Unlearnable Datasets, and also launch learning on unlearnable data competitions. The following figures show one clean and the corresponding poisoned examples.

Clean NTGA

Installation

Our code uses the Neural Tangents library, which is built on top of JAX, and TensorFlow 2.0. To use JAX with GPU, please follow JAX's GPU installation instructions. Otherwise, install JAX on CPU by running

pip install jax jaxlib --upgrade

Once JAX is installed, clone and install remaining requirements by running

git clone https://github.com/lionelmessi6410/ntga.git
cd ntga
pip install -r requirements.txt

If you only want to examine the effectiveness of NTGAs, you can download datasets here and evaluate with evaluate.py or any code/model you prefer. To use evaluate.py, you do not need to install JAX externally, instead, all dependencies are specified in requirements.txt.

Usage

NTGA Attack

To generate poisoned data by NTGA, run

python generate_attack.py --model_type fnn --dataset cifar10 --save_path ./data/

There are few important arguments:

  • --model_type: A string. Surrogate model used to craft poisoned data. One of fnn or cnn. fnn and cnn stands for the fully-connected and convolutional networks, respectively.
  • --dataset: A string. One of mnist, cifar10, or imagenet.
  • --t: An integer. Time step used to craft poisoned data. Please refer to main paper for more details.
  • --eps: A float. Strength of NTGA. The default settings for MNIST, CIFAR-10, and ImageNet are 0.3, 8/255, and 0.1, respectively.
  • --nb_iter: An integer. Number of iteration used to generate poisoned data.
  • --block_size: An integer. Block size of B-NTGA algorithm.
  • --batch_size: An integer.
  • --save_path: A string.

In general, the attacks based on the FNN surrogate have greater influence against the fully-connected target networks, while the attacks based on the CNN surrogate work better against the convolutional target networks. The hyperparameter t plays an important role in NTGA, which controls when an attack will take effect during the training process of a target model. With a smaller t, the attack has a better chance to affect training before the early stop.

Both eps and block_size influence the effectiveness of NTGA. Larger eps leads to stronger but more distinguishable perturbations, while larger block_size results in better collaborative effect (stronger attack) in NTGA but also induces both higher time and space complexities. If you encounter out-of-memory (OOM) errors, especially when using --model_type cnn, please try to reduce block_size and batch_size to save memory usage.

For ImageNet or another custom dataset, please specify the path to the dataset in the code directly. The original clean data and the poisoned ones crafted by NTGA can be found and downloaded in Unlearnable Datasets.

Evaluation

Next, you can examine the effectiveness of the poisoned data crafted by NTGA by calling

python evaluate.py --model_type densenet121 --dataset cifar10 --dtype NTGA \
	--x_train_path ./data/x_train_cifar10_ntga_cnn_best.npy \
	--y_train_path ./data/y_train_cifar10.npy \
	--batch_size 128 --save_path ./figure/

If you are interested in the performance on the clean data, run

python evaluate.py --model_type densenet121 --dataset cifar10 --dtype Clean \
	--batch_size 128 --save_path ./figures/

This code will also plot the learning curve and save it in --save_path ./figures/. The following figures show the results of DenseNet121 trained on the CIFAR-10 dataset. The left figure demonstrates the normal learning curve, where the network is trained on the clean data, and the test accuracy achieves ~93%. On the contrary, the figure on the right-hand side shows the remarkable result of NTGA, where the training accuracy is ~100%, but test accuracy drops sharply to ~37%, in other word, the model fails to generalize.

There are few important arguments:

  • --model_type: A string. Target model used to evaluate poisoned data. One of fnn, fnn_relu, cnn, resnet18, resnet34, or densenet121.
  • --dataset: A string. One of mnist, cifar10, or imagenet.
  • --dtype: A string. One of Clean or NTGA, used for figure's title.
  • --x_train_path: A string. Path for poisoned training data. Leave it empty for clean data (mnist or cifar10).
  • --y_train_path: A string. Path for training labels. Leave it empty for clean data (mnist or cifar10).
  • --x_val_path: A string. Path for validation data.
  • --y_val_path: A string. Path for validation labels.
  • --x_test_path: A string. Path for testing data. The ground truth (y_test) is hidden. You can submit the prediction to Competitions.
  • --epoch: An integer.
  • --batch_size: An integer.
  • --save_path: A string.

Visualization

How does the poisoned data look like? Is it truly imperceptible to a human? You can visualize the poisoned data and their normalized perturbations by calling

python plot_visualization.py --dataset cifar10 \
	--x_train_path ./data/x_train_cifar10.npy \
	--x_train_ntga_path ./data/x_train_cifar10_ntga_fnn_t1.npy \
	--save_path ./figure/

The following figure shows some poisoned CIFAR-10 images. As we can see, they look almost the same as the original clean data. However, training on the clean data can achieve ~92% test accuracy, while training on the poisoned data the performance decreases sharply to ~35%.

Here we also visualize the high-resolution ImageNet dataset and find even more interesting results:

The perturbations are nearly invisible. The only difference between the clean and poisoned images is the hue!

There are few important arguments:

  • --dataset: A string. One of mnist, cifar10, or imagenet.
  • --x_train_path: A string. Path for clean training data.
  • --x_train_ntga_path: A string. Path for poisoned training data.
  • --num: An integer. Number of data to be visualized. The valid value is 1-5.
  • --save_path: A string.

Results

Here we briefly report the performance of NTGA and two baselines (RFA and DeepConfuse) equipped with the FNN and CNN surrogates. NTGA(·) denotes an attack generated by NTGA with a hyperparameter t mentioned in NTGA Attack, and NTGA(best) represents the results of the best hyperparameter of the specific dataset and surrogate combination. NTGA(1) is the most imperceptible poisoned data which has the lowest-frequency perturbations.

As we can see, NTGA attack has remarkable transferability across a wide range of models, including Fully-connected Networks (FNNs) and Convolutional Neural Networks (CNNs), trained under various conditions regarding the optimization method, loss function, etc.

FNN Surrogate

Target\Attack Clean RFA DeepConfuse NTGA(1) NTGA(best)
Dataset: MNIST
FNN 96.26 74.23 - 3.95 2.57
FNN-ReLU 97.87 84.62 - 2.08 2.18
CNN 99.49 86.99 - 33.80 26.03
Dataset: CIFAR-10
FNN 49.57 37.79 - 36.05 20.63
FNN-ReLU 54.55 43.19 - 40.08 25.95
CNN 78.12 74.71 - 48.46 36.05
ResNet18 91.92 88.76 - 39.72 39.68
DenseNet121 92.71 88.81 - 46.50 47.36
Dataset: ImageNet
FNN 91.60 90.20 - 76.60 76.60
FNN-ReLU 92.20 89.60 - 80.00 80.00
CNN 96.00 95.80 - 77.80 77.80
ResNet18 99.80 98.20 - 76.40 76.40
DenseNet121 98.40 96.20 - 72.80 72.80

CNN Surrogate

Target\Attack Clean RFA DeepConfuse NTGA(1) NTGA(best)
Dataset: MNIST
FNN 96.26 69.95 15.48 8.46 4.63
FNN-ReLU 97.87 84.15 17.50 3.48 2.86
CNN 99.49 94.92 46.21 23.89 15.64
Dataset: CIFAR-10
FNN 49.57 41.31 32.59 28.84 28.81
FNN-ReLU 54.55 46.87 35.06 32.77 32.11
CNN 78.12 73.80 44.84 41.17 40.52
ResNet18 91.92 89.54 41.10 34.74 33.29
DenseNet121 92.71 90.50 54.99 43.54 37.79
Dataset: ImageNet
FNN 91.60 87.80 90.80 75.80 75.80
FNN-ReLU 92.20 87.60 91.00 80.00 80.00
CNN 96.00 94.40 93.00 79.00 79.00
ResNet18 99.80 96.00 92.80 76.40 76.40
DenseNet121 98.40 90.40 92.80 80.60 80.60

Unlearnable Datasets

Here we publicly release the poisoned datasets generated by NTGA. We provide 5 versions for each dataset. FNN(·) denotes an attack generated by NTGA from the FNN surrogate with a hyperparameter t. The best hyperparameter t is selected according to the empirical results. For the 2-class ImageNet, we choose n01560419 and n01910747 (bulbul v.s. jellyfish) from the original ImageNet dataset. Please refer to the main paper and supplementary materials for more details.

  • MNIST
    • FNN(best) = FNN(64)
    • CNN(best) = CNN(64)
  • CIFAR-10
    • FNN(best) = FNN(4096)
    • CNN(best) = CNN(8)
  • ImageNet
    • FNN(best) = FNN(1)
    • CNN(best) = CNN(1)

Please support the project by hitting a star if you find this code or dataset is helpful for your research.

Dataset\Attack Clean FNN(1) FNN(best) CNN(1) CNN(best)
MNIST Download Download Download Download Download
CIFAR-10 Download Download Download Download Download
ImageNet Download Download Download Download Download

We do not provide the test label (y_test.npy) for each dataset since we launched Competitions. Nevertheless, if you are a researcher and need to use these data for academic purpose, we are willing to provide the complete dataset to you. Please send an email to [email protected]. Last but not least, using these data to participate in the competition defeats the entire purpose. So seriously, don't do that.

Competitions

We launch 3 competitions on Kaggle, where we are interested in learning from unlearnable MNIST, CIFAR-10, and 2-class ImageNet created by Neural Tangent Generalization Attack. Feel free to give it a shot if you are interested. We welcome people who can successfully train the model on the unlearnable data and overturn our conclusions.

Kaggle Competitions Unlearnable MNIST Unlearnable CIFAR-10 Unlearnable ImageNet

For instance, you can create a submission file by calling:

python evaluate.py --model_type resnet18 --dataset cifar10 --dtype NTGA \
	--x_train_path ./data/x_train_cifar10_unlearn.npy \
	--y_train_path ./data/y_train_cifar10.npy \
	--x_val_path ./data/x_val_cifar10.npy \
	--y_val_path ./data/y_val_cifar10.npy \
	--x_test_path ./data/x_test_cifar10.npy \
	--save_path ./figure/

The results will be stored as y_pred_cifar10.csv. Please specify --x_test_path for the test data.

Citation

If you find this code or dataset is helpful for your research, please cite our ICML 2021 paper.

@inproceedings{yuan2021neural,
	title={Neural Tangent Generalization Attacks},
	author={Yuan, Chia-Hung and Wu, Shan-Hung},
	booktitle={International Conference on Machine Learning},
	pages={12230--12240},
	year={2021},
	organization={PMLR}
}
Owner
Chia-Hung Yuan
My goal is to develop robust machine learning to reliably interact with a dynamic and uncertain world.
Chia-Hung Yuan
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022