tokei-pie
Render tokei results to charts.
Installation
pip install tokei-pie
Usage
$ tokei -o json | tokei-pie
(This is how django looks like!)
jut - JUpyter notebook Terminal viewer. The command line tool view the IPython/Jupyter notebook in the terminal. Install pip install jut Usage $jut --
ColorShell ─ 1.5 Planned for v2: setup.sh for setup alias This script converts HEX and RGB code to x1b x1b is code for colorize outputs, works on ou
Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi
whiteboxgui An interactive GUI for WhiteboxTools in a Jupyter-based environment GitHub repo: https://github.com/giswqs/whiteboxgui Documentation: http
plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En
Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi
nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib
pdvega: Vega-Lite plotting for Pandas Dataframes pdvega is a library that allows you to quickly create interactive Vega-Lite plots from Pandas datafra
plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En
Currently when trying to run on any directory on Windows gives the following error.
Traceback (most recent call last):
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 86, in _run_code
exec(code, run_globals)
File "C:\Users\AppData\Local\Programs\Python\Python310\Scripts\tokei-pie.exe\__main__.py", line 7, in <module>
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\site-packages\tokei_pie\main.py", line 227, in main
sectors = read_root(data)
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\site-packages\tokei_pie\main.py", line 197, in read_root
sectors.extend(read_reports(reports, key))
File "C:\Users\erin.power\AppData\Local\Programs\Python\Python310\lib\site-packages\tokei_pie\main.py", line 176, in read_reports
sectors = convert2sectors(tree, dict_reports, parent_id)
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\site-packages\tokei_pie\main.py", line 168, in convert2sectors
dir2sector(".", dirs, reports, sectors, language)
File "C:\Users\AppData\Local\Programs\Python\Python310\lib\site-packages\tokei_pie\main.py", line 112, in dir2sector
subdirs = dirs[dirname]
KeyError: '.'
Reproduce:
$ tokei -o json /path/to/my_code | tokei-pie
Traceback (most recent call last):
File "/Users/fming/wkspace/github/tokei-pie-plate/venv/bin/tokei-pie", line 8, in <module>
sys.exit(main())
File "/Users/fming/wkspace/github/tokei-pie-plate/venv/lib/python3.10/site-packages/tokei_pie/main.py", line 227, in main
sectors = read_root(data)
File "/Users/fming/wkspace/github/tokei-pie-plate/venv/lib/python3.10/site-packages/tokei_pie/main.py", line 197, in read_root
sectors.extend(read_reports(reports, key))
File "/Users/fming/wkspace/github/tokei-pie-plate/venv/lib/python3.10/site-packages/tokei_pie/main.py", line 176, in read_reports
sectors = convert2sectors(tree, dict_reports, parent_id)
File "/Users/fming/wkspace/github/tokei-pie-plate/venv/lib/python3.10/site-packages/tokei_pie/main.py", line 168, in convert2sectors
dir2sector(".", dirs, reports, sectors, language)
File "/Users/fming/wkspace/github/tokei-pie-plate/venv/lib/python3.10/site-packages/tokei_pie/main.py", line 140, in dir2sector
_blanks, _code, _comments = dir2sector(
File "/Users/fming/wkspace/github/tokei-pie-plate/venv/lib/python3.10/site-packages/tokei_pie/main.py", line 140, in dir2sector
_blanks, _code, _comments = dir2sector(
File "/Users/fming/wkspace/github/tokei-pie-plate/venv/lib/python3.10/site-packages/tokei_pie/main.py", line 140, in dir2sector
_blanks, _code, _comments = dir2sector(
[Previous line repeated 1 more time]
File "/Users/fming/wkspace/github/tokei-pie-plate/venv/lib/python3.10/site-packages/tokei_pie/main.py", line 118, in dir2sector
stats = reports[item]
KeyError: './lib/python3.10/site-packages/jinja2/compiler.py'
There seems to be something wrong with the relative path calculation.
When I pass folders as arguments to token I get a key error in tokei-pie
# in tokei repo
token src -o json | tokei-pie
Traceback (most recent call last):
File "/opt/homebrew/bin/tokei-pie", line 8, in <module>
sys.exit(main())
File "/opt/homebrew/lib/python3.9/site-packages/tokei_pie/main.py", line 213, in main
sectors = read_root(data)
File "/opt/homebrew/lib/python3.9/site-packages/tokei_pie/main.py", line 194, in read_root
sectors.extend(read_reports(reports, key))
File "/opt/homebrew/lib/python3.9/site-packages/tokei_pie/main.py", line 173, in read_reports
sectors = convert2sectors(tree, dict_reports, parent_id)
File "/opt/homebrew/lib/python3.9/site-packages/tokei_pie/main.py", line 165, in convert2sectors
dir2sector(".", dirs, reports, sectors, language)
File "/opt/homebrew/lib/python3.9/site-packages/tokei_pie/main.py", line 115, in dir2sector
stats = reports[item]
KeyError: './input.rs'
.
by @laixintao in https://github.com/laixintao/tokei-pie/pull/4Full Changelog: https://github.com/laixintao/tokei-pie/compare/v1.1.2...v1.2.0
Source code(tar.gz)Red-Shadow Lightspin AWS IAM Vulnerability Scanner Description Scan your AWS IAM Configuration for shadow admins in AWS IAM based on misconfigured den
MLP Hidden Layer Activation Visualization To gain some intuition about the internal representation of simple multi-layer perceptrons (MLPs) I trained
An interactive NVIDIA-GPU process viewer, the one-stop solution for GPU process management.
streamlit-letsplot This is a work-in-progress, providing a convenience function to plot charts from the Lets-Plot visualization library. Example usage
Speedtest monitor for Grafana A small project that allows internet speed monitoring using Grafana, InfluxDB 2 and Speedtest. Demo Requirements Docker
TileDB-xarray This library provides a backend engine to xarray using the TileDB Storage Engine. Example usage: import xarray as xr dataset = xr.open_d
Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l
Mandelbrot-set-Realtime-Viewer- Realtime Viewer Mandelbrot set with Python and Taichi (cpu, opengl, cuda, vulkan, metal) Control: "WASD" - movement, "
jupiter Generate "Jupiter" plots for circular genomes Description Python scripts to generate plots from ViennaRNA output. Written in "pidgin" python w
Personal IMDB Graphs with Bokeh Do you like watching movies and also rate all of them in IMDB? Would you like to look at your IMDB stats based on your
ladybug-charts Ladybug extension to generate 2D charts. Installation pip install ladybug-charts QuickStart import ladybug_charts API Documentation Loc
drawdata This small python app allows you to draw a dataset in a jupyter notebook. This should be very useful when teaching machine learning algorithm
RadarScenes Tools About This python package provides fast visualization for the RadarScenes dataset. The Open GL based visualizer is smoother than ole
Schematics Python Data Structures for Humans™. About Project documentation: https://schematics.readthedocs.io/en/latest/ Schematics is a Python librar
Kcse-Data-Analysis Data science project for exploratory analysis on the kcse grades dataset (Kamilimu Data Science Track) Findings The performance of
matplotlib is probably the single most used Python package for 2D-graphics. It provides both a very quick way to visualize data from Python and publication-quality figures in many formats. We are goi
Robinhood 1099 Parser This project converts Robinhood Securities 1099 tax document from PDF to CSV file. This tool will be helpful for those who need
Visualization-of-Human3.6M-Dataset Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset. human-motion-prediction
VDLdraw Batch plot the log files exported from VisualDL using Matplotlib. At pre
Point-Cloud Some method of processing point cloud inversion the completion pointcloud to incomplete point cloud Some model of encoding point cloud to