PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

Overview

LayoutTransformer

arXiv | BibTeX | Project Page

This repo contains code for single GPU training of LayoutTransformer from LayoutTransformer: Layout Generation and Completion with Self-attention. This code was rewritten from scratch using a cleaner GPT codebase. Some of the details such as training hyperparameters might differ from the arxiv version of the paper.

teaser!

How To Use This Code

Start a new conda environment

conda env create -f environment.yml
conda activate layout

or update an existing environment

conda env update -f environment.yml --prune

Logging with wandb

In order to log experiments to wandb, we use wandb's API keys that can be found here https://wandb.ai/settings. Copy your key and store them in an environment variable using

export WANDB_API_KEY=
   

   

Alternately, you can also login using wandb login.

Datasets

COCO Bounding Boxes

See the instructions to obtain the dataset here.

PubLayNet Document Layouts

See the instructions to obtain the dataset here.

LayoutVAE

Reimplementation of LayoutVAE is here. Code contributed primarily by Justin.

cd layout_vae

# Train the CountVAE model
python train_counts.py \
    --exp count_coco_instances \
    --train_json /path/to/coco/annotations/instances_train2017.json \
    --val_json /path/to/coco/annotations/instances_val2017.json \
    --epochs 50

# Train the BoxVAE model
python train_counts.py \
    --exp box_coco_instances \
    --train_json /path/to/coco/annotations/instances_train2017.json \
    --val_json /path/to/coco/annotations/instances_val2017.json \
    --epochs 50

LayoutTransformer

Rewritten from scratch using a cleaner GPT codebase. Some of the details such as training hyperparameters might differ from the arxiv version.

# Training on MNIST layouts
python main.py \
    --data_dir /path/to/mnist \
    --threshold 1 --exp mnist_threshold_1
    
# Training on COCO bounding boxes or PubLayNet
python main.py \
    --train_json /path/to/annotations/train.json \
    --val_json /path/to/annotations/val.json \
    --exp publaynet

BibTeX

If you use this code, please cite

@inproceedings{gupta2021layouttransformer,
  title={LayoutTransformer: Layout Generation and Completion with Self-attention},
  author={Gupta, Kamal and Lazarow, Justin and Achille, Alessandro and Davis, Larry S and Mahadevan, Vijay and Shrivastava, Abhinav},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={1004--1014},
  year={2021}
}
}

Acknowledgments

We would like to thank several public repos

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022