Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Overview

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

reproducibility task

This is the repository for the paper Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigation, developed by Giacomo Medda, PhD student at University of Cagliari, with the support of Gianni Fenu, Full Professor at University of Cagliari, Mirko Marras, Non-tenure Track Assistant Professor at University of Cagliari, and Ludovico Boratto, Tenure Track Assistant Professor at University of Cagliari.

The goal of the paper was to find a common understanding and practical benchmarks on how and when each procedure of consumer fairness in recommender systems can be used in comparison to the others.

Repository Organization

  • reproducibility_study

    This is the directory that contains the source code of each reproduced paper identified by the author names of the respective paper.

    • Ashokan and Haas: Fairness metrics and bias mitigation strategies for rating predictions
    • Burke et al: Balanced Neighborhoods for Multi-sided Fairness in Recommendation
    • Ekstrand et al: All The Cool Kids, How Do They Fit In. Popularity and Demographic Biases in Recommender Evaluation and Effectiveness
    • Frisch et al: Co-clustering for fair recommendation
    • Kamishima et al: Recommendation Independence
    • Li et al: User-oriented Fairness in Recommendation
    • Rastegarpanah et al: Fighting Fire with Fire. Using Antidote Data to Improve Polarization and Fairness of Recommender Systems
    • Wu et al: Learning Fair Representations for Recommendation. A Graph-based Perspective
  • Preprocessing

    Contains the scripts to preprocess the raw datasets and to generate the input data for each reproduced paper.

  • Evaluation

    Contains the scripts to load the predictions of each reproduced paper, compute the metrics and generate plots and tables in latex and markdown forms.

  • Other Folders

    The other folders not already mentioned are part of the codebase that supports the scripts contained in Preprocessing and Evaluation. These directories and their contents are described by README_codebase, since the structure and code inside these folders is only used to support the reproducibility study and it is independent from the specific implementation of each paper.

Reproducibility Pipeline

  • Code Integration.

    The preprocessing of the raw datasets is performed by the scripts.

    The commands to preprocess each dataset are present at the top of the related dataset script, but the procedure is better described inside the REPRODUCE.md. The preprocessed datasets will be saved in data/preprocessed_datasets.

    Once the MovieLens 1M and the Last.FM 1K dataset have been processed, we can pass to the generation of the input data for each reproduced paper:

    The commands to generate the input data for each preprocessed dataset and sensitive attribute are present at the top of the script, but the procedure is better described inside the REPRODUCE.md). The generated input data will be saved in Preprocessing/input_data.

  • Mitigation Execution

    Each paper (folder) listed in the subsection reproducibility_study of Repository Organization contains a REPRODUCE.md file that describes everything to setup, prepare and run each reproduced paper. In particular, instructions to install the dependencies are provided, as well as the specific subfolders to fill with the input data generated in the previous step, in order to properly run the experiments of the selected paper. The procedure for each source code is better described in the already mentioned REPRODUCE.md file.

  • Relevance Estimation and Metrics Computation

    The REPRODUCE.md file contained in each "paper" folder describes also where the predictions can be found at the end of the mitigation procedure and guide the developer on following the instructions of the REPRODUCE.md of Evaluation that contains:

    • metrics_reproduced: script that loads all the predictions of relevance scores and computes the metrics in form of plots and latex tables This is the script that must be configured the most, since the paths of the specific predictions of each paper and model could be copied and pasted inside the script if the filenames do not correspond to what we expect and prepare. The REPRODUCE.MD already mentioned better described these steps and specifying which are the commands to execute to get the desired results.

Installation

Considering the codebase and the different versions of libraries used by each paper, multiple Python versions are mandatory to execute properly this code.

The codebase (that is the code not inside reproducibility_study, Preprocessing, Evaluation) needs a Python 3.8 installation and all the necessary dependencies can be installed with the requirements.txt file in the root of the repository with the following command in Windows:

pip install -r requirements.txt

or in Linux:

pip3 install -r requirements.txt

The installation of each reproducible paper is thoroughly described in the REPRODUCE.md that you can find in each paper folder, but every folder contains a requirements.txt file that you can use to install the dependencies in the same way. We recommend to use virtual environments at least for each reproduced paper, since some require specific versions of Python (2, 3, 3.7) and a virtual environment for each paper will maintain a good order in the code organization. Virtual environments can be created in different ways depending on the Python version and on the system. The Python Documentation describes the creation of virtual environments for Python >= 3.5, while the virtualenv Website can be used for Python 2.

Results

Top-N Recommendation Gender

Top-N Recommendation Gender

Top-N Recommendation Age

Top-N Recommendation Age

Rating Prediction Gender

Rating Prediction Gender

Rating Prediction Age

Rating Prediction Age

AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

1 Dec 30, 2021
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Ian Covert 130 Jan 01, 2023
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022