Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

Related tags

Data AnalysisPyUpBit
Overview

Contributors Forks Stargazers Issues LinkedIn


PyUpBit

CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing
Paper

Table of Contents
  1. About The Project
  2. Usage
  3. Contact
  4. Acknowledgements

About The Project

Bitmaps are common data structures used in database implemen- tations due to having fast read performance. Often they are used in applications in need of common equality and selective range queries. Essentially, they store a bit-vector for each value in the domain of each attribute to keep track of large scale data files. How- ever, the main drawbacks associated with bitmap indexes are its encoding and decoding performances of bit-vectors. Currently the state of art update-optimized bitmap index, update conscious bitmaps, are able to support extremely efficient deletes and have improved update speeds by treating updates as delete then insert. Update conscious bitmaps make use of an additional bit-vector, called the existence bit-vector, to keep track of whether or not a value has been updated. By initializing all values of the existence bit-vector to 1, the data for each attribute associated with each row in the existence bit-vector is validated and presented. If a value needs to be deleted, the corresponding row in the existence bit-vector gets changed to 0, invalidating any data associated with that row. This new method in turn allows for very efficient deletes. To add on, updates are then performed as a delete operation, then an insert operation in to the end of the bit-vector. However, update conscious bitmaps do not scale well with more data. As more and more data gets updated and inserted, the run time increases significantly as well. Because update queries are out-of- place and increase size of vectors, read queries become increasingly expensive and time consuming. Furthermore, as the number of updates and deletes increases, the bit-vector becomes less and less compressible. This brings us to updateable Bitmaps (UpBit). According to the paper, UpBit: Scalable In-Memory Updatable Bitmap Indexing, re- searchers Manos Athanassoulis, Zheng Yan, and Stratos Idreos developed a new bitmap structure that improved the write per- formance of bitmaps without sacrificing read performance. The main differentiating point of UpBit is its use of an update bit vector for every value in the domain of an attribute that keeps track of updated values. This allows for faster write performance without sacrificing read performance. Based on this paper, we implemented UpBit and compared it to our implementation of update conscious bitmaps to compare and test the performances of both methods.

Usage

We used PyCharm to conduct our tests, /ucb, /upbit for algorithms, /tests for running testing scripts, and rest of the files for compression for memory usage improvement as well as creating and visualizing data.

Contact

Daniel Park - @h1yung - [email protected]

Acknowledgements

  • Original Paper
  • Winston Chen
  • Gregory Chininis
  • Daniel Hooks
  • Michael Lee
Owner
Hyeong Kyun (Daniel) Park
I like coding
Hyeong Kyun (Daniel) Park
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
Multiple Pairwise Comparisons (Post Hoc) Tests in Python

scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal

Maksim Terpilowski 264 Dec 30, 2022
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
🌍 Create 3d-printable STLs from satellite elevation data 🌏

mapa 🌍 Create 3d-printable STLs from satellite elevation data Installation pip install mapa Usage mapa uses numpy and numba under the hood to crunch

Fabian Gebhart 13 Dec 15, 2022
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021
PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation

VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat

Julian Mack 23 Dec 16, 2022
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
A script to "SHUA" H1-2 map of Mercenaries mode of Hearthstone

lushi_script Introduction This script is to "SHUA" H1-2 map of Mercenaries mode of Hearthstone Installation Make sure you installed python=3.6. To in

210 Jan 02, 2023
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021