Pandas and Dask test helper methods with beautiful error messages.

Related tags

Data Analysisbeavis
Overview

beavis

Pandas and Dask test helper methods with beautiful error messages.

cornholio

test helpers

These test helper methods are meant to be used in test suites. They provide descriptive error messages to allow for a seamless development workflow.

The test helpers are inspired by chispa and spark-fast-tests, popular test helper libraries for the Spark ecosystem.

There are built-in Pandas testing methods that can also be used, but they don't provide error messages that are as easy to parse. The following sections compare the built-in Pandas output and what's output by Beavis, so you can choose for yourself.

Column comparisons

The built-in assert_series_equal method does not make it easy to decipher the rows that are equal and the rows that are different, so quickly fixing your tests and maintaining flow is hard.

Here's the built-in error message when comparing series that are not equal.

df = pd.DataFrame({"col1": [1042, 2, 9, 6], "col2": [5, 2, 7, 6]})
pd.testing.assert_series_equal(df["col1"], df["col2"])
>   ???
E   AssertionError: Series are different
E
E   Series values are different (50.0 %)
E   [index]: [0, 1, 2, 3]
E   [left]:  [1042, 2, 9, 6]
E   [right]: [5, 2, 7, 6]

Here's the beavis error message that aligns rows and highlights the mismatches in red.

import beavis

beavis.assert_pd_column_equality(df, "col1", "col2")

BeavisColumnsNotEqualError

You can also compare columns in a Dask DataFrame.

ddf = dd.from_pandas(df, npartitions=2)
beavis.assert_dd_column_equality(ddf, "col1", "col2")

The assert_dd_column_equality error message is similarly descriptive.

DataFrame comparisons

The built-in pandas.testing.assert_frame_equal method doesn't output an error message that's easy to understand, see this example.

df1 = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
df2 = pd.DataFrame({'col1': [5, 2], 'col2': [3, 4]})
pd.testing.assert_frame_equal(df1, df2)
E   AssertionError: DataFrame.iloc[:, 0] (column name="col1") are different
E
E   DataFrame.iloc[:, 0] (column name="col1") values are different (50.0 %)
E   [index]: [0, 1]
E   [left]:  [1, 2]
E   [right]: [5, 2]

beavis provides a nicer error message.

beavis.assert_pd_equality(df1, df2)

BeavisDataFramesNotEqualError

DataFrame comparison options:

  • check_index (default True)
  • check_dtype (default True)

Let's convert the Pandas DataFrames to Dask DataFrames and use the assert_dd_equality function to check they're equal.

ddf1 = dd.from_pandas(df1, npartitions=2)
ddf2 = dd.from_pandas(df2, npartitions=2)
beavis.assert_dd_equality(ddf1, ddf2)

These DataFrames aren't equal, so we'll get a good error message that's easy to debug.

Dask DataFrames not equal

Development

Install Poetry and run poetry install to create a virtual environment with all the Beavis dependencies on your machine.

Other useful commands:

  • poetry run pytest tests runs the test suite
  • poetry run black . to format the code
  • poetry build packages the library in a wheel file
  • poetry publish releases the library in PyPi (need correct credentials)
Owner
Matthew Powers
Data engineer. Like Scala, Spark, Ruby, data, and math.
Matthew Powers
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

CRISPRanalysis InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family. In this work, we present a workflow

2 Jan 31, 2022
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Meltano: ELT for the DataOps era. Meltano is open source, self-hosted, CLI-first, debuggable, and extensible.

Meltano is open source, self-hosted, CLI-first, debuggable, and extensible. Pipelines are code, ready to be version c

Meltano 625 Jan 02, 2023
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
Data and code accompanying the paper Politics and Virality in the Time of Twitter

Politics and Virality in the Time of Twitter Data and code accompanying the paper Politics and Virality in the Time of Twitter. In specific: the code

Cardiff NLP 3 Jul 02, 2022
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Matthew Powers 18 Nov 28, 2022
A set of tools to analyse the output from TraDIS analyses

QuaTradis (Quadram TraDis) A set of tools to analyse the output from TraDIS analyses Contents Introduction Installation Required dependencies Bioconda

Quadram Institute Bioscience 2 Feb 16, 2022
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023