Analytical view of olist e-commerce in Brazil

Overview

Analysis of E-Commerce Public Dataset by Olist

The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this we will first go through an exploratory data analysis using graphical tools to create self explanatory plots for better understanding what is behind braziian online purchasing. It also deals with many real-world challenges faced by e-commerce websites that includes predicting customer lifetime value using RFM score and k-means clustering, customer segmentation to increase retention rate and find out best valued customers by segmenting them into homogeneous groups, understand the traits/behaviour of each group, and engage them with relevant targeted campaigns.

Dataset

Brazilian ecommerce public dataset of orders made at Olist Store. The dataset has information of 100k orders from 2016 to 2018 made at multiple marketplaces in Brazil. Its features allows viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers. Also included is a geolocation dataset that relates Brazilian zip codes to lat/lng coordinates.

This dataset have nine tables which are connected with few common attributes. https://www.kaggle.com/olistbr/brazilian-ecommerce

Approach

We started with EDA and Trend Analysis of Products and Customers to get insights for a business Analyst. Then we Segmented customers into specific clusters based on Cohort Analysis, RFM Modeling using their purchasing behavior. Then we will use machine Learning techniques called K-Means to get more customized and fine tunned groupings. Then we used uplift/persuasion modeling to identify which customer needs treatment and identify Upselling & Cross Selling Opportunities Predict Customer Lifetime value (LTV)

Customer Segmentation and RFM Modeling

Using RFM anaylsis and K-means Clustering, we created the below Clusters or segments of customers to further give targetted recommendation to them.

Potential Loyalists — High potential to enter our loyal customer segments, why not throw in some freebies on their next purchase to show that you value them!

Needs Attention — Showing promising signs with quantity and value of their purchase but it has been a while since they last bought sometime from you. Let's target them with their wishlist items and a limited time offer discount.

Hibernating Almost Lost — Made some initial purchases but have not seen them since. Was it a bad customer experience? Or product-market fit? Let's spend some resources building our brand awareness with them.

Loyal Customers — These are the most loyal customers. They are active with frequent purchases and high monetary value. They could be the brand evangelists and should focus on serving them well. They could be the best customers to get feedback on any new product launches or be the early adopters or promoters.

Champions Big Spenders - It is always a good idea to carefully “incubate” all new customers, but because these customers spent a lot on their purchase, it’s even more important. Like with the Best Customers group, it’s important to make them feel valued and appreciated – and to give them terrific incentives to continue interacting with the brand. image

Product Recommendation and Geospatial Rating Analysis

Different products are recommended based on popularity of new customer and based on highly rated categories. A geoplot is created showing ratings by state on Brazilian map.

image

Owner
Gurpreet Singh
MSc in Data Science & Business Analytics Grad at HEC Montreal. Growing towards becoming a data scientist.
Gurpreet Singh
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

Xiao Xiao 9 Aug 09, 2022
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis rese

BinTuner 42 Dec 16, 2022
The Master's in Data Science Program run by the Faculty of Mathematics and Information Science

The Master's in Data Science Program run by the Faculty of Mathematics and Information Science is among the first European programs in Data Science and is fully focused on data engineering and data a

Amir Ali 2 Jun 17, 2022
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

Saiem Gilani 37 Dec 27, 2022
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

Corca AI 7 Sep 30, 2022
Analyze the Gravitational wave data stored at LIGO/VIRGO observatories

Gravitational-Wave-Analysis This project showcases how to analyze the Gravitational wave data stored at LIGO/VIRGO observatories, using Python program

1 Jan 23, 2022
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.

Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s

Cedric Zhuang 1.1k Dec 28, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI

MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI Hallo

Florent Zahoui 1 Feb 07, 2022