InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

Overview

CRISPRanalysis

InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

In this work, we present a workflow to analyze InDels from the multicopy α-gliadin gene family from wheat based on NGS data without the need to pre-viously establish a reference sequence for each genetic background. The pipeline was tested it in a multiple sample set, including three generations of edited wheat lines (T0, T1, and T2), from three different backgrounds and ploidy levels (hexaploid and tetraploid). Implementation of Bayesian optimization of Usearch parameters, inhouse Python, and bash scripts are reported.

Workflow:

Step1:

Bayesian optimization was implemented to optimize Usearch v9.2.64 parameters from merge to search steps for the α-gliadin amplicons on the wild type lines.

python Step1_Bayesian_usearch.py --database 
   
     --file_intervals 
    
      --trim_primers 
     
       --path_usearch_control 
      

      
     
    
   


Help:

Argument Help
--database File fasta with database sequences. Example: /path/to/database/database.fasta.
--file_intervals File with intervals for parameters. Example in /Examples/Example_intervals.txt.
--trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.
--path_usearch_control Path of usearch and control raw data separated by "," without white spaces. Example: /paht/to/usearch,/path/to/reads_control.


Outputs:

  • Bayesian_usearch.txt File with optimal values, optimal function value, samples or observations, obatained values and search space.
  • Bayesian.png Convergence plot.
  • Bayesian_data_res.txt File with the minf(x) after n calls in each iteration.

Step 2:

Usearch pipeline optimazed on wild type lines for studying results of optimization.

Step2_usearch_WT_to_DB.sh dif pct maxee amp id path_control name_dir_usearch path_database trim_primers


Help:

Arguments must be disposed in the order indicated before.

  • dif Optimal value for dif Usearch parameter.
  • pct Optimal value for pct Usearch parameter.
  • maxee Optimal value for maxee Usearch parameter.
  • amp Optimal value for amp Usearch parameter.
  • id Optimal value for id Usearch parameter.
  • path_control Path of the wild type lines fastq files.
  • name_dir_usearch Path of Usearch.
  • path_database Path of alpha-gliadin amplicon database.
  • trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.


Outputs:

Usearch merge files, filter files, unique amplicons file, unique denoised amplicon (Amp/otu) file, otu table file.

Step 3:

Usearch pipeline optimazed on all lines (wild types and CRISPR lines) for studying denoised unique amplicon relative abundances.

Step3_usearch_ALL_LINES.sh dif pct maxee amp id path_ALL name_dir_usearch trim_primers


Help:

Arguments must be disposed in the order indicated before.

  • dif Optimal value for dif Usearch parameter.
  • pct Optimal value for pct Usearch parameter.
  • maxee Optimal value for maxee Usearch parameter.
  • amp Optimal value for amp Usearch parameter.
  • id Optimal value for id Usearch parameter.
  • path_ALL Path of all lines (wild type and CRISPR lines) fastq files.
  • name_dir_usearch Path of Usearch.
  • trim_primers Trim primers in reads if you use database without primers. Optios: YES | NO.


Outputs:

Usearch merge files, filter files, unique amplicon file, unique denoised amplicon (Amp/otu) file, otu table file.

Before Step 4, otu table file must be normalized by TMM normalization method (edgeR package in R). Results of TMM normalized unique denoised amplicons table can be represented as heatmaps. Unique denoised amplicons can be compared between them to detect Insertions and Deletions (InDels) in CRISPR lines.

Step 4:

Create tables with the presence or absence of unique denoised amplicons in each CRISPR line compared to the wild type lines.

python Step4_usearch_to_table.py --file_otu 
   
     --file_group 
    
      --prefix_output 
     
       --genotype 
      

      
     
    
   


Help:

Argument Help
--file_otu File of TMM normalized otu_table from usearch. Remove "#OTU" from the first line.
--file_group Path to file of genotypes in wild type and CRISPR lines. Example in /Examples/Example_groups.txt.
--prefix_output Prefix to output name. Example: if you are working with BW208 groups: BW.
--genotype Genotype name. Example: if you are working with BW208 groups: BW208.

Default threshold 0.3 % of frequency of each unique denoised amplicon (Amp) in each line.


Outputs:

Substitute "name" in output names for the prefix_output string.

  • Amptable_frequency.txt Table of Amps (otus) transformed to frequencies for apply the threshold.
  • Amptable_brutes_name.txt Table with number of reads contained in the unique denoised amplicons (Amps) present in each line.
  • Amps_name.txt Table with number of unique denoised amplicons (Amps) in each line.

Python 3.6 or later is required.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

Nicolai Haaber Junge 1 Oct 20, 2021
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
a tool that compiles a csv of all h1 program stats

h1stats - h1 Program Stats Scraper This python3 script will call out to HackerOne's graphql API and scrape all currently active programs for informati

Evan 40 Oct 27, 2022
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

Nguyễn Quang Huy 5 Sep 28, 2022
Finding project directories in Python (data science) projects, just like there R rprojroot and here packages

Find relative paths from a project root directory Finding project directories in Python (data science) projects, just like there R here and rprojroot

Daniel Chen 102 Nov 16, 2022
VevestaX is an open source Python package for ML Engineers and Data Scientists.

VevestaX Track failed and successful experiments as well as features. VevestaX is an open source Python package for ML Engineers and Data Scientists.

Vevesta 24 Dec 14, 2022
Bigdata Simulation Library Of Dream By Sandman Books

BIGDATA SIMULATION LIBRARY OF DREAM BY SANDMAN BOOKS ================= Solution Architecture Description In the realm of Dreaming, its ruler SANDMAN,

Maycon Cypriano 3 Jun 30, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

Xiao Xiao 9 Aug 09, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022