A Python module for clustering creators of social media content into networks

Overview

sm_content_clustering

A Python module for clustering creators of social media content into networks.

Currently supports identifying potential networks of Facebook Pages in the CSV output files from CrowdTangle.

Installation

Can install via pip with

pip install git+https://github.com/jdallen83/sm_content_clustering

Install requires pandas and fasttext

Language Prediction

To enable language prediction, you will need to download a fasttext language model. Module was tested with lid.176.ftz.

Usage

Command line

Can be called as a module for command line usage.

For usage guide:

python -m sm_content_clustering -h

Example that will create an output CSV with potential networks and predicted languages from several input CSVs:

python -m sm_content_clustering --add_language --ft_model_path /path/to/lid.176.ftz --output_path /path/to/output.csv --min_threshold 0.03 /path/to/input_1.csv /path/to/input_2.csv

Python

Module can also be called from within Python.

Example that will generate a Pandas dataframe that contains potential networks:

import sm_content_clustering.sm_processor as sm_processor

input_files = ['/path/to/1.csv', '/path/to/2.csv', '/path/to/3.csv']
df = sm_processor.ct_generate_page_clusters(input_files, add_language=True, ft_model_path='/path/to/lid.176.ftz')
print(df)

Options

Arguments for sm_processor.ct_generate_page_clusters() are

  1. infiles: Input files to read content from. Required.
  2. content_cols: Which columns from the input files to use as content for the purposes of clustering identical posts. Default: Message, Image Text, Link, Link Text
  3. add_language: Whether to predict the page and network languages. Default: False
  4. ft_model_path: Path to fasttext model file. Default: None
  5. outfile: Path to write output CSV with potential networks. Default: None
  6. update_every: How often to output clustering status. (Print status 1 every N pages). Default: 1000
  7. min_threshold: Minimum similarity score for clustering. Possible range between 0 and 1, with 1 being perfect high confidence overlap, and 0 being no overlap. Default: 0.03
  8. second_cluster_factor: Requirement that the best matched cluster for a page must score a factor X above the second best matched cluster. Default: 2.5

Methodology

Module assumes you have social media content, which includes the body content of a message and the account that created it. It begins by grouping by all messages, and finds which accounts have shared identical messages within the dataset. It then applies a basic agglomerative clustering algorithm to group the accounts into clusters that are frequently sharing the same messages.

The clustering loops through the list of all accounts, normally sorted in reverse size or popularity, and for each account, searches all existing clusters to see if there is a valid match, given the min_threshold and second_cluster_factor parameters. If there is a match, the account is added to the existing cluster. If there is not a match, then, if there is enough messages from the account to justify, a new cluster will be created with the account acting as the seed. Otherwise the account is discarded.

In theory, any measure could be used to determine if a given account should be added to a given cluster, such as, what fraction of the accounts messages match those within the cluster. Currently, the module combines message coverage, Normalized Pointwise Mutual Information, and a dampening factor that reduces matching score when there is an insufficient number of messages to be confident.

At the end, any clusters that are below a size threshold are discarded.

License

MIT License

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt Labs 6.3k Jan 08, 2023
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
peptides.py is a pure-Python package to compute common descriptors for protein sequences

peptides.py Physicochemical properties and indices for amino-acid sequences. 🗺️ Overview peptides.py is a pure-Python package to compute common descr

Martin Larralde 32 Dec 31, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
scikit-survival is a Python module for survival analysis built on top of scikit-learn.

scikit-survival scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizi

Sebastian Pölsterl 876 Jan 04, 2023
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI

MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI Hallo

Florent Zahoui 1 Feb 07, 2022
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
Single machine, multiple cards training; mix-precision training; DALI data loader.

Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra

2 Jun 27, 2022
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
INFO-H515 - Big Data Scalable Analytics

INFO-H515 - Big Data Scalable Analytics Jacopo De Stefani, Giovanni Buroni, Théo Verhelst and Gianluca Bontempi - Machine Learning Group Exercise clas

Yann-Aël Le Borgne 58 Dec 11, 2022