Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

Overview

WeRateDogs Twitter Data from 2015 to 2017

Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

Table of Contents

  1. Introduction
  2. Project Overview
  3. Requirements
  4. Project Movitivation
  5. Key Files
  6. Results
  7. Licensing, Authors, and Acknowledgements

1. Introduction

Real-world data rarely comes clean. Using Python and its libraries, I gathered data from a variety of sources and in a variety of formats, assessed its quality and tidiness, then cleaned it. This is called data wrangling. I documented my wrangling efforts in a Jupyter Notebook, then showcased them through analyses and visualizations using Python and its libraries.

The dataset that I wrangled (and analyzing and visualizing) was the tweet archive of Twitter user @dog_rates, also known as WeRateDogs. WeRateDogs is a Twitter account that rates people's dogs with a humorous comment about the dog. These ratings almost always have a denominator of 10. The numerators, though? Almost always greater than 10. 11/10, 12/10, 13/10, etc. Why? Because "they're good dogs Brent." WeRateDogs has over 4 million followers and has received international media coverage.

WeRateDogs downloaded their Twitter archive and sent it to Udacity via email to use in this project. This archive contains basic tweet data (tweet ID, timestamp, text, etc.) for all 5000+ of their tweets as they stood on August 1, 2017.

WRD_twitter_banner

2. Project Overview

Tasks in this project were as follows:

  • Step 1: Gathering data
  • Step 2: Assessing data
  • Step 3: Cleaning data
  • Step 4: Storing data
  • Step 5: Analyzing, and visualizing data
  • Step 6: Reporting
    • My data wrangling efforts
    • My data analyses and visualizations

3. Requirements

This project was created in a Jupyter Notebook made available via Anaconda and written in python.\ The following versions of languages and libraries were used in creating this project:

  • python==2.7.18
  • ipython==7.31.0
  • matplotlib==3.5.1
  • numpy==1.22.0
  • pandas==1.3.5
  • requests==2.27.1
  • scipy==1.7.3
  • seaborn==0.11.2
  • tweepy==4.4.0

4. Project Motivation

The goal: wrangle WeRateDogs Twitter data to create interesting and trustworthy analyses and visualizations. The Twitter archive is great, but it only contains very basic tweet information. Additional gathering, then assessing and cleaning is required for "Wow!"-worthy analyses and visualizations.

The overall purpose of this Udacity project was to refine our data wrangling skills with secondary importance on delivering multiple polished visualzations and tell a story or solve a problem. In other words, the journey was more important than the destination.

5. Key Files

  • twitter_archive_enhanced.csv
    The WeRateDogs Twitter archive contains basic tweet data for all 5000+ of their tweets, but not everything. One column the archive does contain though: each tweet's text, which Udacity used to extract rating, dog name, and dog "stage" (i.e. doggo, floofer, pupper, and puppo) to make this Twitter archive "enhanced." Of the 5000+ tweets, only those tweets with ratings were filtered. The data was extracted programmatically by Udacity, but the data was left messy on purpose. The ratings aren't all correct. Same goes for the dog names and probably dog stages (see below for more information on these) too. I had to assess and clean these columns to use them for analysis and visualization.

  • tweet_json.txt
    Resulting data queried using Twitter's API. It was necessary to gather the retweet count and favorite count which were omitted from the basic twitter_archive_enhanced.csv.

  • image-predictions.tsv
    Udacity ran every image in the WeRateDogs Twitter archive was through a neural network that can classify breeds of dogs. The results: a table full of image predictions (the top three only) alongside each tweet ID, image URL, and the image number that corresponded to the most confident prediction (numbered 1 to 4 since tweets can have up to four images).

  • wrangle_act.ipynb
    This contains the bulk of the project. This notebook contains all code for gathering, assessing, cleaning, analyzing, and visualizing data.

  • wrangle_report.pdf
    This was a report for documenting the data wrangling process: gather, assess, and clean.

  • act_report.pdf
    Documentation of analysis and insights

  • twitter_archive_master.csv
    Cleaned and merged dataset containing data from the 3 source data sets

6. Results

As said in the project motivation, the data wrangling process itself was more relevant than uncovering insights. At any rate, I was able to answer the following 4 questions:

  1. What is the most retweeted tweet?
    From the data I had from 2015 to 2017, this gem was the most retweeted tweet.
  2. What is the most common rating?
    12/10
  3. What are the most common breeds found by the neural network?
    The top 5, from less to most common, were Pug, Chihuahua, Welsh Corgi, Labrador Retriever, then finally Golden Retriever.
  4. What is the average retweet count for each rating?
    Screen Shot 2022-01-11 at 21 22 39
    I saw a general positive correlation between dog rating and retweet count (i.e. popularity). 13/10 and 14/10 tweets had the most retweets on average. Further details of the results can be seen in the act_report.pdf file.

7. Licensing, Authors, and Acknowledgements

All data provided and sourced by Udacity.

Owner
Keenan Cooper
Keenan Cooper
Extract Thailand COVID-19 Cluster data from daily briefing pdf.

Thailand COVID-19 Cluster Data Extraction About Extract Clusters from Thailand Daily COVID-19 briefing PDF Download latest data Here. Data will be upd

Noppakorn Jiravaranun 5 Sep 27, 2021
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dy

2 Nov 08, 2021
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown.

Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown

915 Dec 26, 2022
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
Jupyter notebooks for the book "The Elements of Statistical Learning".

This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.

Madiyar 369 Dec 30, 2022
Feature engineering and machine learning: together at last

Feature engineering and machine learning: together at last! Lambdo is a workflow engine which significantly simplifies data analysis by unifying featu

Alexandr Savinov 14 Sep 15, 2022
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022