Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

Overview

GraspNet Baseline

Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020).

[paper] [dataset] [API] [doc]


Top 50 grasps detected by our baseline model.

teaser

Requirements

  • Python 3
  • PyTorch 1.6
  • Open3d >=0.8
  • TensorBoard 2.3
  • NumPy
  • SciPy
  • Pillow
  • tqdm

Installation

Get the code.

git clone https://github.com/graspnet/graspnet-baseline.git
cd graspnet-baseline

Install packages via Pip.

pip install -r requirements.txt

Compile and install pointnet2 operators (code adapted from votenet).

cd pointnet2
python setup.py install

Compile and install knn operator (code adapted from pytorch_knn_cuda).

cd knn
python setup.py install

Install graspnetAPI for evaluation.

git clone https://github.com/graspnet/graspnetAPI.git
cd graspnetAPI
pip install .

Tolerance Label Generation

Tolerance labels are not included in the original dataset, and need additional generation. Make sure you have downloaded the orginal dataset from GraspNet. The generation code is in dataset/generate_tolerance_label.py. You can simply generate tolerance label by running the script: (--dataset_root and --num_workers should be specified according to your settings)

cd dataset
sh command_generate_tolerance_label.sh

Or you can download the tolerance labels from Google Drive/Baidu Pan and run:

mv tolerance.tar dataset/
cd dataset
tar -xvf tolerance.tar

Training and Testing

Training examples are shown in command_train.sh. --dataset_root, --camera and --log_dir should be specified according to your settings. You can use TensorBoard to visualize training process.

Testing examples are shown in command_test.sh, which contains inference and result evaluation. --dataset_root, --camera, --checkpoint_path and --dump_dir should be specified according to your settings. Set --collision_thresh to -1 for fast inference.

The pretrained weights can be downloaded from:

checkpoint-rs.tar and checkpoint-kn.tar are trained using RealSense data and Kinect data respectively.

Demo

A demo program is provided for grasp detection and visualization using RGB-D images. You can refer to command_demo.sh to run the program. --checkpoint_path should be specified according to your settings (make sure you have downloaded the pretrained weights). The output should be similar to the following example:

Try your own data by modifying get_and_process_data() in demo.py. Refer to doc/example_data/ for data preparation. RGB-D images and camera intrinsics are required for inference. factor_depth stands for the scale for depth value to be transformed into meters. You can also add a workspace mask for denser output.

Results

Results "In repo" report the model performance with single-view collision detection as post-processing. In evaluation we set --collision_thresh to 0.01.

Evaluation results on RealSense camera:

Seen Similar Novel
AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4
In paper 27.56 33.43 16.95 26.11 34.18 14.23 10.55 11.25 3.98
In repo 47.47 55.90 41.33 42.27 51.01 35.40 16.61 20.84 8.30

Evaluation results on Kinect camera:

Seen Similar Novel
AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4
In paper 29.88 36.19 19.31 27.84 33.19 16.62 11.51 12.92 3.56
In repo 42.02 49.91 35.34 37.35 44.82 30.40 12.17 15.17 5.51

Citation

Please cite our paper in your publications if it helps your research:

@inproceedings{fang2020graspnet,
  title={GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping},
  author={Fang, Hao-Shu and Wang, Chenxi and Gou, Minghao and Lu, Cewu},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR)},
  pages={11444--11453},
  year={2020}
}

License

All data, labels, code and models belong to the graspnet team, MVIG, SJTU and are freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an email at fhaoshu at gmail_dot_com and cc lucewu at sjtu.edu.cn .

Owner
GraspNet
GraspNet-1Billion official orgnization. Make general grasping great!
GraspNet
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023