Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Related tags

Deep LearningSB-FBSDE
Overview

Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory [ICLR 2022]

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that generalizes score-based models to fully nonlinear forward and backward diffusions.

SB-FBSDE result

This repo is co-maintained by Guan-Horng Liu and Tianrong Chen. Contact us if you have any questions! If you find this library useful, please cite ⬇️

@inproceedings{chen2022likelihood,
  title={Likelihood Training of Schr{\"o}dinger Bridge using Forward-Backward SDEs Theory},
  author={Chen, Tianrong and Liu, Guan-Horng and Theodorou, Evangelos A},
  booktitle={International Conference on Learning Representations},
  year={2022}
}

Installation

This code is developed with Python3. PyTorch >=1.7 (we recommend 1.8.1). First, install the dependencies with Anaconda and activate the environment sb-fbsde with

conda env create --file requirements.yaml python=3
conda activate sb-fbsde

Training

python main.py \
  --problem-name <PROBLEM_NAME> \
  --forward-net <FORWARD_NET> \
  --backward-net <BACKWARD_NET> \
  --num-FID-sample <NUM_FID_SAMPLE> \ # add this flag only for CIFAR-10
  --dir <DIR> \
  --log-tb 

To train an SB-FBSDE from scratch, run the above command, where

  • PROBLEM_NAME is the dataset. We support gmm (2D mixture of Gaussian), checkerboard (2D toy dataset), mnist, celebA32, celebA64, cifar10.
  • FORWARD_NET & BACKWARD_NET are the deep networks for forward and backward drifts. We support Unet, nscnpp, and a toy network for 2D datasets.
  • NUM_FID_SAMPLE is the number of generated images used to evaluate FID locally. We recommend 10000 for training CIFAR-10. Note that this requires first downloading the FID statistics checkpoint.
  • DIR specifies where the results (e.g. snapshots during training) shall be stored.
  • log-tb enables logging with Tensorboard.

Additionally, use --load to restore previous checkpoint or pre-trained model. For training CIFAR-10 specifically, we support loading the pre-trained NCSN++ as the backward policy of the first SB training stage (this is because the first SB training stage can degenerate to denoising score matching under proper initialization; see more details in Appendix D of our paper).

Other configurations are detailed in options.py. The default configurations for each dataset are provided in the configs folder.

Evaluating the CIFAR-10 Checkpoint

To evaluate SB-FBSDE on CIFAR-10 (we achieve FID 3.01 and NLL 2.96), create a folder checkpoint then download the model checkpoint and FID statistics checkpoint either from Google Drive or through the following commands.

mkdir checkpoint && cd checkpoint

# FID stat checkpoint. This's needed whenever we
# need to compute FID during training or sampling.
gdown --id 1Tm_5nbUYKJiAtz2Rr_ARUY3KIFYxXQQD 

# SB-FBSDE model checkpoint for reproducing results in the paper.
gdown --id 1Kcy2IeecFK79yZDmnky36k4PR2yGpjyg 

After downloading the checkpoints, run the following commands for computing either NLL or FID. Set the batch size --samp-bs properly depending on your hardware.

# compute NLL
python main.py --problem-name cifar10 --forward-net Unet --backward-net ncsnpp --dir ICLR-2022-reproduce
  --load checkpoint/ciifar10_sbfbsde_stage_8.npz --compute-NLL --samp-bs <BS>
# compute FID
python main.py --problem-name cifar10 --forward-net Unet --backward-net ncsnpp --dir ICLR-2022-reproduce
  --load checkpoint/ciifar10_sbfbsde_stage_8.npz --compute-FID --samp-bs <BS> --num-FID-sample 50000 --use-corrector --snr 0.15
Owner
Guan-Horng Liu
CMU RI → Uber ATG → GaTech ML
Guan-Horng Liu
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
3 Apr 20, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022