Official implementation of "Robust channel-wise illumination estimation"

Overview

Description

This repository provides the official implimentation of the illuminant estimation algorithm CWCC proposed in paper Robust channel-wise illumination estimation accepted in BMVC 2021.

CWCC

Abstract:

Recently, Convolutional Neural Networks (CNNs) have been widely used to solve the illuminant estimation problem and have often led to state-of-the-art results. Standard approaches operate directly on the input image. In this paper, we argue that this problem can be decomposed into three channel-wise independent and symmetric sub-problems and propose a novel CNN-based illumination estimation approach based on this decomposition. The proposed method substantially reduces the number of parameters needed to solve the task while achieving competitive experimental results compared to state-of-the-art methods. Furthermore, the practical application of illumination estimation techniques typically requires identifying the extreme error cases. This can be achieved using an uncertainty estimation technique. In this work, we propose a novel color constancy uncertainty estimation approach that augments the trained model with an auxiliary branch which learns to predict the error based on the feature representation. Intuitively, the model learns which feature combinations are robust and are thus likely to yield low errors and which combinations result in erroneous estimates. We test this approach on the proposed method and show that it can indeed be used to avoid several extreme error cases and, thus, improves the practicality of the proposed technique.

Motivation:

Formally, RGB values of an image at every pixel are expressed as a function of the global illuminant , the original colors $\textbf{R}(x,y)$ as follows:

where is element-wise multiplication. Illumination estimation refers to the problem of estimating given an input . Most CNN-based illuminant estimation approaches operate directly on the input image without exploiting the specificities and characteristics the aforementioned equation defining the problem. In fact, it is easy to see that the illumination estimation problem can be divided into three problems using the color channels (r,g,b):

We note that the sub-equations in this decomposition are linear and symmetric, i.e., the problem defined in each equation is similar. We propose a novel CNN-based illuminant estimation approach, called CWCC, which leverages the decomposition enabling us to reduce the number of parameters up to 90%.

Channel-wise color constancy:

CWCC is composed of two blocks, the disjoint block and the merging block. The disjoint block learns to solve each sub-equation separately. To this end, each color channel has a separate CNN sub-model. Moreover, we exploit the symmetry of the sub-problems by sharing the weights of 'filter blocks' of the three sub-models. In the merging block, we concatenate the outputs of each channel of the first block. Then, we use a model which acts on this mixed representation and aims to learn the optimal way to merge the feature maps of each channel and approximate the illuminant .

Uncertainty estimation:

For the practical use of illuminant estimation techniques, it is important to be able to identify when the model will fail and when its prediction for a given scene is not reliable. We propose to augment our trained illuminant estimation model to predict the model uncertainty. We add an additional branch linked to the last intermediate layer which aims to learn to predict the error based on the feature representation. Intuitively, the model learns which feature combinations are robust and are thus likely to yield low errors and which combinations result in erroneous estimates. The predicted error can be seen as an uncertainty estimate as it directly quantifies to expected loss. Similar to an uncertainty measure, it is expected to have high values in the case of high errors and lower values in the case of low errors.

Given an input image, we generate two outputs: the main illuminant prediction and the predicted error using an auxiliary branch. As we have access to the ground-truth illuminations of our training samples, we can construct a training set for the additional branch by computing the true errors obtained by the trained illuminant estimation model. While training the uncertainty estimation block, we freeze the prediction part of the network to ensure a 'fixed' representation of every input sample and fine-tune only the additional branch of the network.

Usage

INTEL-TAU Dataset

INTEL-TAU dataset is the largest publicly available illumination estimation dataset. It is composed of 7022 scenes in total. The variety of scenes captured using three different camera models, i.e., Canon 5DSR, Nikon D810, and Sony IMX135, makes the dataset appropriate for evaluating the camera and scene invariance of the different illumination estimation techniques.

Dependencies

The project was tested in Python 3. Run pip install -r requirements.txt to install dependent packages.

Using our codes.

1/ Download the preprossed 1080p TIFF variant of the dataset.

2/ Set the root path variable in main_BoCF.py to your data path, e.g., 'root_path': '/mnt/Data/Firas2/Intel_v3/processed_1080p'

3/ Run the script main_training.py : python3 main_training.py

Walking through the main code (main_training.py):

1/ First a dataset class is created using the paramters

inteltau = INTEL_TAU_DATASET(**dataset_params)
inteltau.set_subsets_splits()

2/ For each fold, we generate the split using the configuration file:

partition,ground_truths = inteltau.get_train__test_10folds(fold)            

3/ We augment the training and validation data relative to the current fold and save the augmented dataset relative to the fild in the aug_path. Note1: This step is only excuted in case the augmented dataset folder does not exist. Note2: Don't stop the code in the middle of this step. In case the code was stopped before this step is finished, the aug_path folder needs to be deleted manually.

augment_data(15*len(partition['train']),partition['train'],ground_truths['train'],(227,227),train_dir)    
augment_data(5*len(partition['validation']),partition['validation'],ground_truths['validation'],(227,227),val_dir)  

4/ We create a CWCC model with the corresponding input shape. We freeze the uncertainty estimation layers

 model = CWCC(input_shape= input_shape)
 
 for layer in model.layers:
      if layer.name[0:3]== 'var':
           layer.trainable = False
           print(layer.name)
        
 model.summary() 

5/ Training the model and testing it using the test set

 history = model.fit(generator=training_generator, epochs=EPOCHS,
                        validation_data=validation_generator,
                        steps_per_epoch = (len(partition['train']) // train_params['batch_size']) ,                    
                        use_multiprocessing=True, 
                        callbacks =all_callbacks( path + '.hdf5' ),
                        workers=4)
 test_model(model,partition['test'],ground_truths['test'],method,path,result_path)

6/ Training the uncertainty estimation block

 for layer in model.layers:
      layer.trainable = False
      print('phase2' + layer.name)
                        
 for layer in model.layers:
      if layer.name[0:3]== 'var':
           layer.trainable = True
           print(layer.name)
 history = model.fit(generator=training_generator, epochs=twoEPOCHS,
                            validation_data=validation_generator,
                            steps_per_epoch = (len(partition['train']) // train_params['batch_size']) ,                    
                            use_multiprocessing=True, 
                            callbacks =[savecsvlog2],
                            workers=16)

Results

The numerical results of the different approaches on INTEL-TAU datasets. We report the different statistics of the Recovery and Reproduction errors using the 10-fold cross validation protocol.

We also provide some visual results of CWCC on three samples from INTEL-TAU. From left to right, the input image, the corrected images with CWCC method, and the ground truth image.

We also provide some visual results of uncertainty estimation on the test samples of the different INTEL-TAU folds. We report the predicted loss vs the true loss using the proposed approach. The correlation coefficients from fold 0 to 10 are: 0.47, 0.34, 0.24, 0.25, 0.34, 0.30, 0.45, 0.28, 0.33, and 0.31.

Cite This Work

@article{laakom2021robust,
  title={Robust channel-wise illumination estimation},
  author={Laakom, Firas and Raitoharju, Jenni and Nikkanen, Jarno and Iosifidis, Alexandros and Gabbouj, Moncef},
  journal={arXiv preprint arXiv:2111.05681},
  year={2021}
}
Owner
Firas Laakom
Ph.D. student at Tampere University, Finland.
Firas Laakom
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022