FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

Overview

FaceVerse

FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset

Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang Ma, Liang Li, Yebin Liu CVPR 2022

Tsinghua University & Ant Group

[Dataset] [Project Page]

teaser

Abstract

We present FaceVerse, a fine-grained 3D Neural Face Model, which is built from hybrid East Asian face datasets containing 60K fused RGB-D images and 2K high-fidelity 3D head scan models. A novel coarse-to-fine structure is proposed to take better advantage of our hybrid dataset. In the coarse module, we generate a base parametric model from large-scale RGB-D images, which is able to predict accurate rough 3D face models in different genders, ages, etc. Then in the fine module, a conditional StyleGAN architecture trained with high-fidelity scan models is introduced to enrich elaborate facial geometric and texture details. Note that different from previous methods, our base and detailed modules are both changeable, which enables an innovative application of adjusting both the basic attributes and the facial details of 3D face models. Furthermore, we propose a single-image fitting framework based on differentiable rendering. Rich experiments show that our method outperforms the state-of-the-art methods.

results Fig.1 Single-image fitting results using FaceVerse model.

FaceVerse PCA model and pre-trained checkpoints

Please download the zip file of version 0 or version 1 (recommended) and unzip it in the ./data folder.

FaceVerse version 0 [download]: paper version.

v0

Fig.2 Single-image reconstruction results of version 0 (base model, detail model and expression refined final model).

FaceVerse version 1 [download]:

  • Refine the shape of the base PCA model: symmetrical and more detailed.

  • Remove the points inside the mouth.

  • Refine the expression PCA components.

v1

Fig.3 Single-image reconstruction results of version 1 (base model, detail model and expression refined final model).

FaceVerse version 2 [download] (only the PCA base model for video tracking, please use version 1 for image fitting):

  • Fit the expression components to the 52 blendshapes defined by Apple. Please check 'exp_name_list' in faceverse_simple_v2.npy for the mapping relation.

  • Provide a simplification option (normal with 28632 vertices, simplified with 6335 vertices): you can use the selected points of FaceVerse v2 by:

python tracking_online.py  --version 2 --use_simplification
python tracking_offline.py --input example/videos/test.mp4 --res_folder example/video_results --version 2 --use_simplification
  • Refine the shape of the base PCA model: orthogonalization.

Fig.4 Real-time online tracking results (30 fps) of version 2. The real-time version is accelerated by point-base rendering using cuda (this version has not been released).

Requirements

  • Python 3.9
  • PyTorch 1.11.0
  • torchvision 0.11.1
  • PyTorch3D 0.6.0
  • Cuda 11.3
  • ONNX Runtime
  • OpenCV
  • Numpy
  • tqdm
  • ninja

You need to compile the ops provided by stylegan2-pytorch using ninja:

cd third_libs/stylegan_ops
python3 setup.py install

Single-image fitting

Reconstructing a 3D face from a single image. There are three processes: (a) reconstructed by PCA model; (b) refined by the detailed generator; (c) refined by the expression generator.

An example input with a image folder (sampled from the FFHQ dataset):

python3 fit_images.py --version 1 --input example/images --res_folder example/image_results --save_ply

Note: the detailed refinement is based on differentiable rendering, which is quite time-consuming (over 10 minutes).

Video-based tracking using our PCA base model

offline_tracking

Offline tracking input with a video (our code will crop the face region using the first frame, --use_simplification can be only used for version >= 2):

python tracking_offline.py --input example/videos/test.mp4 --res_folder example/video_results --version 2

Online tracking using your PC camera (our code will crop the face region using the first frame, --use_simplification can be only used for version >= 2):

python tracking_online.py  --version 2

online_tracking

Note: the tracking is based on differentiable rendering and only has 2 fps.

Citation

If you use this dataset for your research, please consider citing:

@InProceedings{wang2022faceverse,
title={FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset},
author={Wang, Lizhen and Chen, Zhiyua and Yu, Tao and Ma, Chenguang and Li, Liang and Liu, Yebin},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR2022)},
month={June},
year={2022},
}

Contact

Acknowledgement & License

The code is partially borrowed from 3DMM-Fitting-Pytorch, stylegan2-pytorch and OpenSeeFace. And many thanks to the volunteers participated in data collection. Our License

Owner
Lizhen Wang
Lizhen Wang
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
yufan 81 Dec 08, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023