A library for Multilingual Unsupervised or Supervised word Embeddings

Related tags

Text Data & NLPMUSE
Overview

MUSE: Multilingual Unsupervised and Supervised Embeddings

Model

MUSE is a Python library for multilingual word embeddings, whose goal is to provide the community with:

  • state-of-the-art multilingual word embeddings (fastText embeddings aligned in a common space)
  • large-scale high-quality bilingual dictionaries for training and evaluation

We include two methods, one supervised that uses a bilingual dictionary or identical character strings, and one unsupervised that does not use any parallel data (see Word Translation without Parallel Data for more details).

Dependencies

MUSE is available on CPU or GPU, in Python 2 or 3. Faiss is optional for GPU users - though Faiss-GPU will greatly speed up nearest neighbor search - and highly recommended for CPU users. Faiss can be installed using "conda install faiss-cpu -c pytorch" or "conda install faiss-gpu -c pytorch".

Get evaluation datasets

To download monolingual and cross-lingual word embeddings evaluation datasets:

  • Our 110 bilingual dictionaries
  • 28 monolingual word similarity tasks for 6 languages, and the English word analogy task
  • Cross-lingual word similarity tasks from SemEval2017
  • Sentence translation retrieval with Europarl corpora

You can simply run:

cd data/
wget https://dl.fbaipublicfiles.com/arrival/vectors.tar.gz
wget https://dl.fbaipublicfiles.com/arrival/wordsim.tar.gz
wget https://dl.fbaipublicfiles.com/arrival/dictionaries.tar.gz

Alternatively, you can also download the data with:

cd data/
./get_evaluation.sh

Note: Requires bash 4. The download of Europarl is disabled by default (slow), you can enable it here.

Get monolingual word embeddings

For pre-trained monolingual word embeddings, we highly recommend fastText Wikipedia embeddings, or using fastText to train your own word embeddings from your corpus.

You can download the English (en) and Spanish (es) embeddings this way:

# English fastText Wikipedia embeddings
curl -Lo data/wiki.en.vec https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec
# Spanish fastText Wikipedia embeddings
curl -Lo data/wiki.es.vec https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.es.vec

Align monolingual word embeddings

This project includes two ways to obtain cross-lingual word embeddings:

  • Supervised: using a train bilingual dictionary (or identical character strings as anchor points), learn a mapping from the source to the target space using (iterative) Procrustes alignment.
  • Unsupervised: without any parallel data or anchor point, learn a mapping from the source to the target space using adversarial training and (iterative) Procrustes refinement.

For more details on these approaches, please check here.

The supervised way: iterative Procrustes (CPU|GPU)

To learn a mapping between the source and the target space, simply run:

python supervised.py --src_lang en --tgt_lang es --src_emb data/wiki.en.vec --tgt_emb data/wiki.es.vec --n_refinement 5 --dico_train default

By default, dico_train will point to our ground-truth dictionaries (downloaded above); when set to "identical_char" it will use identical character strings between source and target languages to form a vocabulary. Logs and embeddings will be saved in the dumped/ directory.

The unsupervised way: adversarial training and refinement (CPU|GPU)

To learn a mapping using adversarial training and iterative Procrustes refinement, run:

python unsupervised.py --src_lang en --tgt_lang es --src_emb data/wiki.en.vec --tgt_emb data/wiki.es.vec --n_refinement 5

By default, the validation metric is the mean cosine of word pairs from a synthetic dictionary built with CSLS (Cross-domain similarity local scaling). For some language pairs (e.g. En-Zh), we recommend to center the embeddings using --normalize_embeddings center.

Evaluate monolingual or cross-lingual embeddings (CPU|GPU)

We also include a simple script to evaluate the quality of monolingual or cross-lingual word embeddings on several tasks:

Monolingual

python evaluate.py --src_lang en --src_emb data/wiki.en.vec --max_vocab 200000

Cross-lingual

python evaluate.py --src_lang en --tgt_lang es --src_emb data/wiki.en-es.en.vec --tgt_emb data/wiki.en-es.es.vec --max_vocab 200000

Word embedding format

By default, the aligned embeddings are exported to a text format at the end of experiments: --export txt. Exporting embeddings to a text file can take a while if you have a lot of embeddings. For a very fast export, you can set --export pth to export the embeddings in a PyTorch binary file, or simply disable the export (--export "").

When loading embeddings, the model can load:

  • PyTorch binary files previously generated by MUSE (.pth files)
  • fastText binary files previously generated by fastText (.bin files)
  • text files (text file with one word embedding per line)

The two first options are very fast and can load 1 million embeddings in a few seconds, while loading text files can take a while.

Download

We provide multilingual embeddings and ground-truth bilingual dictionaries. These embeddings are fastText embeddings that have been aligned in a common space.

Multilingual word Embeddings

We release fastText Wikipedia supervised word embeddings for 30 languages, aligned in a single vector space.

Arabic: text Bulgarian: text Catalan: text Croatian: text Czech: text Danish: text
Dutch: text English: text Estonian: text Finnish: text French: text German: text
Greek: text Hebrew: text Hungarian: text Indonesian: text Italian: text Macedonian: text
Norwegian: text Polish: text Portuguese: text Romanian: text Russian: text Slovak: text
Slovenian: text Spanish: text Swedish: text Turkish: text Ukrainian: text Vietnamese: text

You can visualize crosslingual nearest neighbors using demo.ipynb.

Ground-truth bilingual dictionaries

We created 110 large-scale ground-truth bilingual dictionaries using an internal translation tool. The dictionaries handle well the polysemy of words. We provide a train and test split of 5000 and 1500 unique source words, as well as a larger set of up to 100k pairs. Our goal is to ease the development and the evaluation of cross-lingual word embeddings and multilingual NLP.

European languages in every direction

src-tgt German English Spanish French Italian Portuguese
German - full train test full train test full train test full train test full train test
English full train test - full train test full train test full train test full train test
Spanish full train test full train test - full train test full train test full train test
French full train test full train test full train test - full train test full train test
Italian full train test full train test full train test full train test - full train test
Portuguese full train test full train test full train test full train test full train test -

Other languages to English (e.g. {fr,es}-en)

Afrikaans: full train test Albanian: full train test Arabic: full train test Bengali: full train test
Bosnian: full train test Bulgarian: full train test Catalan: full train test Chinese: full train test
Croatian: full train test Czech: full train test Danish: full train test Dutch: full train test
English: full train test Estonian: full train test Filipino: full train test Finnish: full train test
French: full train test German: full train test Greek: full train test Hebrew: full train test
Hindi: full train test Hungarian: full train test Indonesian: full train test Italian: full train test
Japanese: full train test Korean: full train test Latvian: full train test Littuanian: full train test
Macedonian: full train test Malay: full train test Norwegian: full train test Persian: full train test
Polish: full train test Portuguese: full train test Romanian: full train test Russian: full train test
Slovak: full train test Slovenian: full train test Spanish: full train test Swedish: full train test
Tamil: full train test Thai: full train test Turkish: full train test Ukrainian: full train test
Vietnamese: full train test

English to other languages (e.g. en-{fr,es})

Afrikaans: full train test Albanian: full train test Arabic: full train test Bengali: full train test
Bosnian: full train test Bulgarian: full train test Catalan: full train test Chinese: full train test
Croatian: full train test Czech: full train test Danish: full train test Dutch: full train test
English: full train test Estonian: full train test Filipino: full train test Finnish: full train test
French: full train test German: full train test Greek: full train test Hebrew: full train test
Hindi: full train test Hungarian: full train test Indonesian: full train test Italian: full train test
Japanese: full train test Korean: full train test Latvian: full train test Littuanian: full train test
Macedonian: full train test Malay: full train test Norwegian: full train test Persian: full train test
Polish: full train test Portuguese: full train test Romanian: full train test Russian: full train test
Slovak: full train test Slovenian: full train test Spanish: full train test Swedish: full train test
Tamil: full train test Thai: full train test Turkish: full train test Ukrainian: full train test
Vietnamese: full train test

References

Please cite [1] if you found the resources in this repository useful.

Word Translation Without Parallel Data

[1] A. Conneau*, G. Lample*, L. Denoyer, MA. Ranzato, H. Jégou, Word Translation Without Parallel Data

* Equal contribution. Order has been determined with a coin flip.

@article{conneau2017word,
  title={Word Translation Without Parallel Data},
  author={Conneau, Alexis and Lample, Guillaume and Ranzato, Marc'Aurelio and Denoyer, Ludovic and J{\'e}gou, Herv{\'e}},
  journal={arXiv preprint arXiv:1710.04087},
  year={2017}
}

MUSE is the project at the origin of the work on unsupervised machine translation with monolingual data only [2].

Unsupervised Machine Translation With Monolingual Data Only

[2] G. Lample, A. Conneau, L. Denoyer, MA. Ranzato Unsupervised Machine Translation With Monolingual Data Only

@article{lample2017unsupervised,
  title={Unsupervised Machine Translation Using Monolingual Corpora Only},
  author={Lample, Guillaume and Conneau, Alexis and Denoyer, Ludovic and Ranzato, Marc'Aurelio},
  journal={arXiv preprint arXiv:1711.00043},
  year={2017}
}

Related work

Contact: [email protected] [email protected]

Owner
Facebook Research
Facebook Research
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Francis R. Willett 305 Dec 22, 2022
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022