🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

Overview

PAUSE: Positive and Annealed Unlabeled Sentence Embedding

Sentence embedding refers to a set of effective and versatile techniques for converting raw text into numerical vector representations that can be used in a wide range of natural language processing (NLP) applications. The majority of these techniques are either supervised or unsupervised. Compared to the unsupervised methods, the supervised ones make less assumptions about optimization objectives and usually achieve better results. However, the training requires a large amount of labeled sentence pairs, which is not available in many industrial scenarios. To that end, we propose a generic and end-to-end approach -- PAUSE (Positive and Annealed Unlabeled Sentence Embedding), capable of learning high-quality sentence embeddings from a partially labeled dataset, which effectively learns sentence embeddings from PU datasets by jointly optimizing the supervised and PU loss. The main highlights of PAUSE include:

  • good sentence embeddings can be learned from datasets with only a few positive labels;
  • it can be trained in an end-to-end fashion;
  • it can be directly applied to any dual-encoder model architecture;
  • it is extended to scenarios with an arbitrary number of classes;
  • polynomial annealing of the PU loss is proposed to stabilize the training;
  • our experiments (reproduction steps are illustrated below) show that PAUSE constantly outperforms baseline methods.

This repository contains Tensorflow implementation of PAUSE to reproduce the experimental results. Upon using this repo for your work, please cite:

@inproceedings{cao2021pause,
  title={PAUSE: Positive and Annealed Unlabeled Sentence Embedding},
  author={Cao, Lele and Larsson, Emil and von Ehrenheim, Vilhelm and Cavalcanti Rocha, Dhiana Deva and Martin, Anna and Horn, Sonja},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  year={2021},
  url={https://arxiv.org/abs/2109.03155}
}

Prerequisites

Install virtual environment first to avoid breaking your native environment. If you use Anaconda, do

conda update conda
conda create --name py37-pause python=3.7
conda activate py37-pause

Then install the dependent libraries:

pip install -r requirements.txt

Unsupervised STS

Models are trained on a combination of the SNLI and Multi-Genre NLI datasets, which contain one million sentence pairs annotated with three labels: entailment, contradiction and neutral. The trained model is tested on the STS 2012-2016, STS benchmark, and SICK-Relatedness (SICK-R) datasets, which have labels between 0 and 5 indicating the semantic relatedness of sentence pairs.

Training

Example 1: train PAUSE-small using 5% labels for 10 epochs

python train_nli.py \
  --batch_size=1024 \
  --train_epochs=10 \
  --model=small \
  --pos_sample_prec=5

Example 2: train PAUSE-base using 30% labels for 20 epochs

python train_nli.py \
  --batch_size=1024 \
  --train_epochs=20 \
  --model=base \
  --pos_sample_prec=30

To check the parameters, run

python train_nli.py --help

which will print the usage as follows.

usage: train_nli.py [-h] [--model MODEL]
                    [--pretrained_weights PRETRAINED_WEIGHTS]
                    [--train_epochs TRAIN_EPOCHS] [--batch_size BATCH_SIZE]
                    [--train_steps_per_epoch TRAIN_STEPS_PER_EPOCH]
                    [--max_seq_len MAX_SEQ_LEN] [--prior PRIOR]
                    [--train_lr TRAIN_LR] [--pos_sample_prec POS_SAMPLE_PREC]
                    [--log_dir LOG_DIR] [--model_dir MODEL_DIR]

optional arguments:
  -h, --help            show this help message and exit
  --model MODEL         The tfhub link for the base embedding model
  --pretrained_weights PRETRAINED_WEIGHTS
                        The pretrained model if any
  --train_epochs TRAIN_EPOCHS
                        The max number of training epoch
  --batch_size BATCH_SIZE
                        Training mini-batch size
  --train_steps_per_epoch TRAIN_STEPS_PER_EPOCH
                        Step interval of evaluation during training
  --max_seq_len MAX_SEQ_LEN
                        The max number of tokens in the input
  --prior PRIOR         Expected ratio of positive samples
  --train_lr TRAIN_LR   The maximum learning rate
  --pos_sample_prec POS_SAMPLE_PREC
                        The percentage of sampled positive examples used in
                        training; should be one of 1, 10, 30, 50, 70
  --log_dir LOG_DIR     The path where the logs are stored
  --model_dir MODEL_DIR
                        The path where models and weights are stored

Testing

After the model is trained, you will be prompted to where the model is saved, e.g. ./artifacts/model/20210517-131724, where the directory name (20210517-131724) is the model ID. To test the model with that ID, run

python test_sts.py --model=20210517-131724

The test result on STS datasets will be printed on console and also saved in file ./artifacts/test/sts_20210517-131724.txt

Supervised STS

Train

You can continue to finetune a pertained model on supervised STSb. For example, assume we have trained a PAUSE model based on small BERT (say located at ./artifacts/model/20210517-131725), if we want to finetune the model on STSb for 2 epochs, we can run

python ft_stsb.py \
  --model=small \
  --train_epochs=2 \
  --pretrained_weights=./artifacts/model/20210517-131725

Note that it is important to match the model size (--model) with the pretrained model size (--pretrained_weights).

Testing

After the model is finetuned, you will be prompted to where the model is saved, e.g. ./artifacts/model/20210517-131726, where the directory name (20210517-131726) is the model ID. To test the model with that ID, run

python ft_stsb_test.py --model=20210517-131726

SentEval evaluation

To evaluate the PAUSE embeddings using SentEval (preferably using GPU), you need to download the data first:

cd ./data/downstream
./get_transfer_data.bash
cd ../..

Then, run the sent_eval.py script:

python sent_eval.py \
  --data_path=./data \
  --model=20210328-212801

where the --model parameter specifies the ID of the model you want to evaluate. By default, the model should exist in folder ./artifacts/model/embed. If you want to evaluate a trained model in our public GCS (gs://motherbrain-pause/model/...), please run (e.g. PAUSE-NLI-base-50%):

python sent_eval.py \
  --data_path=./data \
  --model_location=gcs \
  --model=20210329-065047

We provide the following models for demonstration purposes:

Model Model ID
PAUSE-NLI-base-100% 20210414-162525
PAUSE-NLI-base-70% 20210328-212801
PAUSE-NLI-base-50% 20210329-065047
PAUSE-NLI-base-30% 20210329-133137
PAUSE-NLI-base-10% 20210329-180000
PAUSE-NLI-base-5% 20210329-205354
PAUSE-NLI-base-1% 20210329-195024
You might also like...
Code for
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Extract Keywords from sentence or Replace keywords in sentences.
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Extract Keywords from sentence or Replace keywords in sentences.
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

SimCSE: Simple Contrastive Learning of Sentence Embeddings
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Releases(1.0)
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
Simplified diarization pipeline using some pretrained models - audio file to diarized segments in a few lines of code

simple_diarizer Simplified diarization pipeline using some pretrained models. Made to be a simple as possible to go from an input audio file to diariz

Chau 65 Dec 30, 2022
GPT-3: Language Models are Few-Shot Learners

GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin

OpenAI 12.5k Jan 05, 2023
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Linear Transformers Are Secretly Fast Weight Programmers This repository contains the code accompanying the paper Linear Transformers Are Secretly Fas

Imanol Schlag 77 Dec 19, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022