Language-Agnostic SEntence Representations

Related tags

Text Data & NLPLASER
Overview

LASER Language-Agnostic SEntence Representations

LASER is a library to calculate and use multilingual sentence embeddings.

NEWS

  • 2019/11/08 CCMatrix is available: Mining billions of high-quality parallel sentences on the WEB [8]
  • 2019/07/31 Gilles Bodard and Jérémy Rapin provided a Docker environment to use LASER
  • 2019/07/11 WikiMatrix is available: bitext extraction for 1620 language pairs in WikiPedia [7]
  • 2019/03/18 switch to BSD license
  • 2019/02/13 The code to perform bitext mining is now available

CURRENT VERSION:

  • We now provide an encoder which was trained on 93 languages, written in 23 different alphabets [6]. This includes all European languages, many Asian and Indian languages, Arabic, Persian, Hebrew, ..., as well as various minority languages and dialects.
  • We provide a test set for more than 100 languages based on the Tatoeba corpus.
  • Switch to PyTorch 1.0

All these languages are encoded by the same BiLSTM encoder, and there is no need to specify the input language (but tokenization is language specific). According to our experience, the sentence encoder also supports code-switching, i.e. the same sentences can contain words in several different languages.

We have also some evidence that the encoder can generalizes to other languages which have not been seen during training, but which are in a language family which is covered by other languages.

A detailed description how the multilingual sentence embeddings are trained can be found in [6], together with an extensive experimental evaluation.

Dependencies

  • Python 3.6
  • PyTorch 1.0
  • NumPy, tested with 1.15.4
  • Cython, needed by Python wrapper of FastBPE, tested with 0.29.6
  • Faiss, for fast similarity search and bitext mining
  • transliterate 1.10.2, only used for Greek (pip install transliterate)
  • jieba 0.39, Chinese segmenter (pip install jieba)
  • mecab 0.996, Japanese segmenter
  • tokenization from the Moses encoder (installed automatically)
  • FastBPE, fast C++ implementation of byte-pair encoding (installed automatically)

Installation

  • set the environment variable 'LASER' to the root of the installation, e.g. export LASER="${HOME}/projects/laser"
  • download encoders from Amazon s3 by bash ./install_models.sh
  • download third party software by bash ./install_external_tools.sh
  • download the data used in the example tasks (see description for each task)

Applications

We showcase several applications of multilingual sentence embeddings with code to reproduce our results (in the directory "tasks").

For all tasks, we use exactly the same multilingual encoder, without any task specific optimization or fine-tuning.

License

LASER is BSD-licensed, as found in the LICENSE file in the root directory of this source tree.

Supported languages

Our model was trained on the following languages:

Afrikaans, Albanian, Amharic, Arabic, Armenian, Aymara, Azerbaijani, Basque, Belarusian, Bengali, Berber languages, Bosnian, Breton, Bulgarian, Burmese, Catalan, Central/Kadazan Dusun, Central Khmer, Chavacano, Chinese, Coastal Kadazan, Cornish, Croatian, Czech, Danish, Dutch, Eastern Mari, English, Esperanto, Estonian, Finnish, French, Galician, Georgian, German, Greek, Hausa, Hebrew, Hindi, Hungarian, Icelandic, Ido, Indonesian, Interlingua, Interlingue, Irish, Italian, Japanese, Kabyle, Kazakh, Korean, Kurdish, Latvian, Latin, Lingua Franca Nova, Lithuanian, Low German/Saxon, Macedonian, Malagasy, Malay, Malayalam, Maldivian (Divehi), Marathi, Norwegian (Bokmål), Occitan, Persian (Farsi), Polish, Portuguese, Romanian, Russian, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Swahili, Swedish, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Uighur, Ukrainian, Urdu, Uzbek, Vietnamese, Wu Chinese and Yue Chinese.

We have also observed that the model seems to generalize well to other (minority) languages or dialects, e.g.

Asturian, Egyptian Arabic, Faroese, Kashubian, North Moluccan Malay, Nynorsk Norwegian, Piedmontese, Sorbian, Swabian, Swiss German or Western Frisian.

References

[1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017

[2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018.

[3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018

[4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018.

[5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018.

[6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018.

[7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019.

[8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB

Owner
Facebook Research
Facebook Research
A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion / autosuggestion

List Of English Words A text file containing over 466k English words. While searching for a list of english words (for an auto-complete tutorial) I fo

dwyl 8.5k Jan 03, 2023
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
LSTM model - IMDB review sentiment analysis

NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on

Sundeep Bhimireddy 1 Jan 29, 2022
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022