Unsupervised Language Model Pre-training for French

Overview

FlauBERT and FLUE

FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. This repository shares everything: pre-trained models (base and large), the data, the code to use the models and the code to train them if you need.

Along with FlauBERT comes FLUE: an evaluation setup for French NLP systems similar to the popular GLUE benchmark. The goal is to enable further reproducible experiments in the future and to share models and progress on the French language.

This repository is still under construction and everything will be available soon.

Table of Contents

1. FlauBERT models
2. Using FlauBERT
    2.1. Using FlauBERT with Hugging Face's Transformers
    2.2. Using FlauBERT with Facebook XLM's library
3. Pre-training FlauBERT
    3.1. Data
    3.2. Training
    3.3. Convert an XLM pre-trained model to Hugging Face's Transformers
4. Fine-tuning FlauBERT on the FLUE benchmark
5. Citation

1. FlauBERT models

FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We have released the pretrained weights for the following model sizes.

The pretrained models are available for download from here or via Hugging Face's library.

Model name Number of layers Attention Heads Embedding Dimension Total Parameters
flaubert-small-cased 6 8 512 54 M
flaubert-base-uncased 12 12 768 137 M
flaubert-base-cased 12 12 768 138 M
flaubert-large-cased 24 16 1024 373 M

Note: flaubert-small-cased is partially trained so performance is not guaranteed. Consider using it for debugging purpose only.

We also provide the checkpoints from here for model base (cased/uncased) and large (cased).

2. Using FlauBERT

In this section, we describe two ways to obtain sentence embeddings from pretrained FlauBERT models: either via Hugging Face's Transformer library or via Facebook's XLM library. We will intergrate FlauBERT into Facebook' fairseq in the near future.

2.1. Using FlauBERT with Hugging Face's Transformers

You can use FlauBERT with Hugging Face's Transformers library as follow.

import torch
from transformers import FlaubertModel, FlaubertTokenizer

# Choose among ['flaubert/flaubert_small_cased', 'flaubert/flaubert_base_uncased', 
#               'flaubert/flaubert_base_cased', 'flaubert/flaubert_large_cased']
modelname = 'flaubert/flaubert_base_cased' 

# Load pretrained model and tokenizer
flaubert, log = FlaubertModel.from_pretrained(modelname, output_loading_info=True)
flaubert_tokenizer = FlaubertTokenizer.from_pretrained(modelname, do_lowercase=False)
# do_lowercase=False if using cased models, True if using uncased ones

sentence = "Le chat mange une pomme."
token_ids = torch.tensor([flaubert_tokenizer.encode(sentence)])

last_layer = flaubert(token_ids)[0]
print(last_layer.shape)
# torch.Size([1, 8, 768])  -> (batch size x number of tokens x embedding dimension)

# The BERT [CLS] token correspond to the first hidden state of the last layer
cls_embedding = last_layer[:, 0, :]

Notes: if your transformers version is <=2.10.0, modelname should take one of the following values:

['flaubert-small-cased', 'flaubert-base-uncased', 'flaubert-base-cased', 'flaubert-large-cased']

2.2. Using FlauBERT with Facebook XLM's library

The pretrained FlauBERT models are available for download from here. Each compressed folder includes 3 files:

  • *.pth: FlauBERT's pretrained model.
  • codes: BPE codes learned on the training data.
  • vocab: BPE vocabulary file.

Note: The following example only works for the modified XLM provided in this repo, it won't work for the original XLM. The code is taken from this tutorial.

import sys
import torch
import fastBPE

# Add Flaubert root to system path (change accordingly)
FLAUBERT_ROOT = '/home/user/Flaubert'
sys.path.append(FLAUBERT_ROOT)

from xlm.model.embedder import SentenceEmbedder
from xlm.data.dictionary import PAD_WORD


# Paths to model files
model_path = '/home/user/flaubert_base_cased/flaubert_base_cased_xlm.pth'
codes_path = '/home/user/flaubert_base_cased/codes'
vocab_path = '/home/user/flaubert_base_cased/vocab'
do_lowercase = False # Change this to True if you use uncased FlauBERT

bpe = fastBPE.fastBPE(codes_path, vocab_path)

sentences = "Le chat mange une pomme ."
if do_lowercase:
    sentences = sentences.lower()

# Apply BPE
sentences = bpe.apply([sentences])
sentences = [(('</s> %s </s>' % sent.strip()).split()) for sent in sentences]
print(sentences)

# Create batch
bs = len(sentences)
slen = max([len(sent) for sent in sentences])

# Reload pretrained model
embedder = SentenceEmbedder.reload(model_path)
embedder.eval()
dico = embedder.dico

# Prepare inputs to model
word_ids = torch.LongTensor(slen, bs).fill_(dico.index(PAD_WORD))
for i in range(len(sentences)):
    sent = torch.LongTensor([dico.index(w) for w in sentences[i]])
    word_ids[:len(sent), i] = sent
lengths = torch.LongTensor([len(sent) for sent in sentences])

# Get sentence embeddings (corresponding to the BERT [CLS] token)
cls_embedding = embedder.get_embeddings(x=word_ids, lengths=lengths)
print(cls_embedding.size())

# Get the entire output tensor for all tokens
# Note that cls_embedding = tensor[0]
tensor = embedder.get_embeddings(x=word_ids, lengths=lengths, all_tokens=True)
print(tensor.size())

3. Pre-training FlauBERT

Install dependencies

You should clone this repo and then install WikiExtractor, fastBPE and Moses tokenizer under tools:

git clone https://github.com/getalp/Flaubert.git
cd Flaubert

# Install toolkit
cd tools
git clone https://github.com/attardi/wikiextractor.git
git clone https://github.com/moses-smt/mosesdecoder.git

git clone https://github.com/glample/fastBPE.git
cd fastBPE
g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast

3.1. Data

In this section, we describe the pipeline to prepare the data for training FlauBERT. This is based on Facebook XLM's library. The steps are as follows:

  1. Download, clean, and tokenize data using Moses tokenizer.
  2. Split cleaned data into: train, validation, and test sets.
  3. Learn BPE on the training set. Then apply learned BPE codes to train, validation, and test sets.
  4. Binarize data.

(1) Download and Preprocess Data

In the following, replace $DATA_DIR, $corpus_name respectively with the path to the local directory to save the downloaded data and the name of the corpus that you want to download among the options specified in the scripts.

To download and preprocess the data, excecute the following commands:

./download.sh $DATA_DIR $corpus_name fr
./preprocess.sh $DATA_DIR $corpus_name fr

For example:

./download.sh ~/data gutenberg fr
./preprocess.sh ~/data gutenberg fr

The first command will download the raw data to $DATA_DIR/raw/fr_gutenberg, the second one processes them and save to $DATA_DIR/processed/fr_gutenberg.

(2) Split Data

Run the following command to split cleaned corpus into train, validation, and test sets. You can modify the train/validation/test ratio in the script.

bash tools/split_train_val_test.sh $DATA_PATH

where $DATA_PATH is path to the file to be split.

The output files are: fr.train, fr.valid, fr.test which are saved under the same directory as the original file.

(3) & (4) Learn BPE and Prepare Data

Run the following command to learn BPE codes on the training set, and apply BPE codes on the train, validation, and test sets. The data is then binarized and ready for training.

bash tools/create_pretraining_data.sh $DATA_DIR $BPE_size

where $DATA_DIR is path to the directory where the 3 above files fr.train, fr.valid, fr.test are saved. $BPE_size is the number of BPE vocabulary size, for example: 30 for 30k,50 for 50k, etc. The output files are saved in $DATA_DIR/BPE/30k or $DATA_DIR/BPE/50k correspondingly.

3.2. Training

Our codebase for pretraining FlauBERT is largely based on the XLM repo, with some modifications. You can use their code to train FlauBERT, it will work just fine.

Execute the following command to train FlauBERT (base) on your preprocessed data:

python train.py \
    --exp_name flaubert_base_cased \
    --dump_path $dump_path \
    --data_path $data_path \
    --amp 1 \
    --lgs 'fr' \
    --clm_steps '' \
    --mlm_steps 'fr' \
    --emb_dim 768 \
    --n_layers 12 \
    --n_heads 12 \
    --dropout 0.1 \
    --attention_dropout 0.1 \
    --gelu_activation true \
    --batch_size 16 \
    --bptt 512 \
    --optimizer "adam_inverse_sqrt,lr=0.0006,warmup_updates=24000,beta1=0.9,beta2=0.98,weight_decay=0.01,eps=0.000001" \
    --epoch_size 300000 \
    --max_epoch 100000 \
    --validation_metrics _valid_fr_mlm_ppl \
    --stopping_criterion _valid_fr_mlm_ppl,20 \
    --fp16 true \
    --accumulate_gradients 16 \
    --word_mask_keep_rand '0.8,0.1,0.1' \
    --word_pred '0.15'                      

where $dump_path is the path to where you want to save your pretrained model, $data_path is the path to the binarized data sets, for example $DATA_DIR/BPE/50k.

Run experiments on multiple GPUs and/or multiple nodes

To run experiments on multiple GPUs in a single machine, you can use the following command (the parameters after train.py are the same as above).

export NGPU=4
export CUDA_VISIBLE_DEVICES=0,1,2,3,4 # if you only use some of the GPUs in the machine
python -m torch.distributed.launch --nproc_per_node=$NGPU train.py

To run experiments on multiple nodes, multiple GPUs in clusters using SLURM as a resource manager, you can use the following command to launch training after requesting resources with #SBATCH (the parameters after train.py are the same as above plus --master_port parameter).

srun python train.py

3.3. Convert an XLM pre-trained model to Hugging Face's Transformers

To convert an XLM pre-trained model to Hugging Face's Transformers, you can use the following command.

python tools/use_flaubert_with_transformers/convert_to_transformers.py --inputdir $inputdir --outputdir $outputdir

where $inputdir is path to the XLM pretrained model directory, $outputdir is path to the output directory where you want to save the Hugging Face's Transformer model.

4. Fine-tuning FlauBERT on the FLUE benchmark

FLUE (French Language Understanding Evaludation) is a general benchmark for evaluating French NLP systems. Please refer to this page for an example of fine-tuning FlauBERT on this benchmark.

5. Video presentation

You can watch this 7mn video presentation of FlauBERT [VIDEO 7mn] (https://www.youtube.com/watch?v=NgLM9GuwSwc)

6. Citation

If you use FlauBERT or the FLUE Benchmark for your scientific publication, or if you find the resources in this repository useful, please cite one of the following papers:

LREC paper

@InProceedings{le2020flaubert,
  author    = {Le, Hang  and  Vial, Lo\"{i}c  and  Frej, Jibril  and  Segonne, Vincent  and  Coavoux, Maximin  and  Lecouteux, Benjamin  and  Allauzen, Alexandre  and  Crabb\'{e}, Beno\^{i}t  and  Besacier, Laurent  and  Schwab, Didier},
  title     = {FlauBERT: Unsupervised Language Model Pre-training for French},
  booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
  month     = {May},
  year      = {2020},
  address   = {Marseille, France},
  publisher = {European Language Resources Association},
  pages     = {2479--2490},
  url       = {https://www.aclweb.org/anthology/2020.lrec-1.302}
}

TALN paper

@inproceedings{le2020flaubert,
  title         = {FlauBERT: des mod{\`e}les de langue contextualis{\'e}s pr{\'e}-entra{\^\i}n{\'e}s pour le fran{\c{c}}ais},
  author        = {Le, Hang and Vial, Lo{\"\i}c and Frej, Jibril and Segonne, Vincent and Coavoux, Maximin and Lecouteux, Benjamin and Allauzen, Alexandre and Crabb{\'e}, Beno{\^\i}t and Besacier, Laurent and Schwab, Didier},
  booktitle     = {Actes de la 6e conf{\'e}rence conjointe Journ{\'e}es d'{\'E}tudes sur la Parole (JEP, 31e {\'e}dition), Traitement Automatique des Langues Naturelles (TALN, 27e {\'e}dition), Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (R{\'E}CITAL, 22e {\'e}dition). Volume 2: Traitement Automatique des Langues Naturelles},
  pages         = {268--278},
  year          = {2020},
  organization  = {ATALA}
}
Owner
GETALP
Study Group for Machine Translation and Automated Processing of Languages and Speech
GETALP
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
Chinese Pre-Trained Language Models (CPM-LM) Version-I

CPM-Generate 为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告] 若您想使用CPM-1进行推理,我们建议使用高效推理工具BMI

Tsinghua AI 1.4k Jan 03, 2023
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
The RWKV Language Model

RWKV-LM We propose the RWKV language model, with alternating time-mix and channel-mix layers: The R, K, V are generated by linear transforms of input,

PENG Bo 877 Jan 05, 2023
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
A python gui program to generate reddit text to speech videos from the id of any post.

Reddit text to speech generator A python gui program to generate reddit text to speech videos from the id of any post. Current functionality Generate

Aadvik 17 Dec 19, 2022
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023