BERT-based Financial Question Answering System

Overview

Jina Jina Jina Jina Docs We are hiring tweet button Python 3.7 3.8 Docker

BERT-based Financial Question Answering System

In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-based Financial Question Answering System. We adapt a passage reranking approach by first retrieving the top-50 candidate answers, then reranking the candidate answers using FinBERT-QA, a BERT-based model fine-tuned on the FiQA dataset that achieved the state-of-the-art results.

🦉 Please refer to this tutorial for a step-by-step guide and detailed explanations.

Motivation

Motivated by the emerging demand in the financial industry for the automatic analysis of unstructured and structured data at scale, QA systems can provide lucrative and competitive advantages to companies by facilitating the decision making of financial advisers. The goal of our system is to search for a list of relevant answer passages given a question. Here is an example of a question and a ground truth answer from the FiQA dataset:

performance

Set up

Clone:

https://github.com/yuanbit/jina-financial-qa-search.git

We will use jina-financial-qa-search/ as our working directory.

Install:

pip install -r requirements.txt

Download data and model:

bash get_data.sh

Index Answers

We want to index a subset of the answer passages from the FiQA dataset, dataset/test_answers.csv:

398960	From  http://financial-dictionary.thefreedictionary.com/Business+Fundamentals  The  facts  that  affect  a  company's      underlying  value.  Examples  of  business      fundamentals  include  debt,  cash  flow,      supply  of  and  demand  for  the  company's      products,  and  so  forth.  For  instance,      if  a  company  does  not  have  a      sufficient  supply  of  products,  it  will      fail.  Likewise,  demand  for  the  product      must  remain  at  a  certain  level  in      order  for  it  to  be  successful.  Strong      business  fundamentals  are  considered      essential  for  long-term  success  and      stability.  See  also:  Value  Investing,      Fundamental  Analysis.  For  a  stock  the  basic  fundamentals  are  the  second  column  of  numbers  you  see  on  the  google  finance  summary  page,    P/E  ratio,  div/yeild,  EPS,  shares,  beta.      For  the  company  itself  it's  generally  the  stuff  on  the  'financials'  link    (e.g.  things  in  the  quarterly  and  annual  report,    debt,  liabilities,  assets,  earnings,  profit  etc.
19183	If  your  sole  proprietorship  losses  exceed  all  other  sources  of  taxable  income,  then  you  have  what's  called  a  Net  Operating  Loss  (NOL).  You  will  have  the  option  to  "carry  back"  and  amend  a  return  you  filed  in  the  last  2  years  where  you  owed  tax,  or  you  can  "carry  forward"  the  losses  and  decrease  your  taxes  in  a  future  year,  up  to  20  years  in  the  future.  For  more  information  see  the  IRS  links  for  NOL.  Note:  it's  important  to  make  sure  you  file  the  NOL  correctly  so  I'd  advise  speaking  with  an  accountant.  (Especially  if  the  loss  is  greater  than  the  cost  of  the  accountant...)
327002	To  be  deductible,  a  business  expense  must  be  both  ordinary  and  necessary.  An  ordinary  expense  is  one  that  is  common  and  accepted  in  your  trade  or  business.  A  necessary  expense  is  one  that  is  helpful  and  appropriate  for  your  trade  or  business.  An  expense  does  not  have  to  be  indispensable  to  be  considered  necessary.    (IRS,  Deducting  Business  Expenses)  It  seems  to  me  you'd  have  a  hard  time  convincing  an  auditor  that  this  is  the  case.    Since  business  don't  commonly  own  cars  for  the  sole  purpose  of  housing  $25  computers,  you'd  have  trouble  with  the  "ordinary"  test.    And  since  there  are  lots  of  other  ways  to  house  a  computer  other  than  a  car,  "necessary"  seems  problematic  also.

You can change the path to answer_collection.tsv to index with the full dataset.

Run

python app.py index

asciicast

At the end you will see the following:

✅ done in ⏱ 1 minute and 54 seconds 🐎 7.7/s
        [email protected][S]:terminated
    [email protected][I]:recv ControlRequest from ctl▸doc_indexer▸⚐
    [email protected][I]:Terminating loop requested by terminate signal RequestLoopEnd()
    [email protected][I]:#sent: 56 #recv: 56 sent_size: 1.7 MB recv_size: 1.7 MB
    [email protected][I]:request loop ended, tearing down ...
    [email protected][I]:indexer size: 865 physical size: 3.1 MB
    [email protected][S]:artifacts of this executor (vecidx) is persisted to ./workspace/doc_compound_indexer-0/vecidx.bin
    [email protected][I]:indexer size: 865 physical size: 3.2 MB
    [email protected][S]:artifacts of this executor (docidx) is persisted to ./workspace/doc_compound_indexer-0/docidx.bin

Search Answers

We need to build a custom Executor to rerank the top-50 candidate answers. We can do this with the Jina Hub API. Let's get make sure that the Jina Hub extension is installed:

pip install "jina[hub]"

We can build the custom Ranker, FinBertQARanker by running:

jina hub build FinBertQARanker/ --pull --test-uses --timeout-ready 60000

Run

We can now use our Financial QA search engine by running:

python app.py search

The Ranker might take some time to compute the relevancy scores since it is using a BERT-based model. You can try out this list of questions from the FiQA dataset:

• What does it mean that stocks are “memoryless”?
• What would a stock be worth if dividends did not exist?
• What are the risks of Dividend-yielding stocks?
• Why do financial institutions charge so much to convert currency?
• Is there a candlestick pattern that guarantees any kind of future profit?
• 15 year mortgage vs 30 year paid off in 15
• Why is it rational to pay out a dividend?
• Why do companies have a fiscal year different from the calendar year?
• What should I look at before investing in a start-up?
• Where do large corporations store their massive amounts of cash?

Community

  • Slack channel - a communication platform for developers to discuss Jina
  • Community newsletter - subscribe to the latest update, release and event news of Jina
  • LinkedIn - get to know Jina AI as a company and find job opportunities
  • Twitter Follow - follow Jina AI and interact with them using hashtag #JinaSearch
  • Company - know more about the company, Jina AI is fully committed to open-source!

License

Copyright (c) 2021 Jina's friend. All rights reserved.

Owner
Bithiah Yuan
Bithiah Yuan
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
Simplified diarization pipeline using some pretrained models - audio file to diarized segments in a few lines of code

simple_diarizer Simplified diarization pipeline using some pretrained models. Made to be a simple as possible to go from an input audio file to diariz

Chau 65 Dec 30, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022