Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Overview

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020

This repository provides Python code and data to reproduce experiments from the article Carousel Personalization in Music Streaming Apps with Contextual Bandits published in the proceedings of the 14th ACM Conference on Recommender Systems (RecSys 2020 - Best Short Paper Candidate).

Carousel Personalization

Media services providers, such as the music streaming platform Deezer, often leverage swipeable carousels to recommend personalized content to their users. These carousels are ranked lists of L items or cards from a substantially larger catalog (of size K), e.g. L albums, artists or playlists recommended on the homepage of the Deezer app. Only a few cards, say L_init < L, are initially displayed to users, who can swipe the screen to see additional cards.

Selecting the most relevant content to display in carousels is a challenging task, as the catalog is large and as users have different preferences. Also, ranking matters: some cards might not be seen by some users due to the swipeable structure.

In Section 2 of our RecSys paper, we model carousel personalization as a multi-armed bandit problem with multiple plays, cascade-based updates, delayed batch feedback and contextual information on users. We aim at capturing the most important characteristics of real-world swipeable carousels.

Then, we evaluate our framework by addressing a carousel-based playlist recommendation task on Deezer. We selected K = 862 playlists, that were created by professional curators from Deezer with the purpose of complying with a specific music genre, cultural area or mood, and that are among the most popular ones on the service. Playlists' cover images constitute the cards that can be recommended to users on the app homepage in a carousel, updated on a daily basis, with L = 12 available slots and L_init = 3 cards initially displayed. We aim at maximizing display-to-stream rates i.e. at identifying the L cards on which each user is the most likely to click and then to stream the underlying content, at least once during the round (= binary reward of 1 for each streamed playlist).

To determine which method (among the several bandit-based strategies mentioned in the paper - see table below) would best succeed in making users stream the recommended playlists, extensive experiments were conducted in two steps:

  • First, offline experiments simulating the responses of 974 960 users (anonymized) to carousel-based recommendations were run, on a simulation environment and on data that we both publicly release in this repository.
  • In the paper, these experiments were completed by an online A/B test on the Deezer app.

Installation

Code

git clone https://github.com/deezer/carousel_bandits
cd carousel_bandits

Requirements: python 3, matplotlib, numpy, pandas, scipy, seaborn

Data

We release two datasets, detailed in Section 3.2 of the paper:

  • user_features.csv: a dataset of 974 960 fully anonymized Deezer users. Each user is described by:
    • a 96-dimensional embedding vector (fields dim_0 to dim_95), to which we subsequently add a bias term in our code, summarizing the user's musical preferences (see paper for details on computations of embedding vectors)
    • a segment: a k-means clustering with k = 100 clusters was performed internally, to also assign a segment to each user, as required by policies implementing our proposed semi-personalization strategy
  • playlist_features.csv: a dataset of 862 playlists. Each playlist i is described by:
    • a 97-dimensional weight vector, corresponding to the theta_i vectors from Section 3.2 of the paper (see paper for details on computations of weight vectors). For each user-playlist pair (u,i), the released "ground-truth" display-to-stream probability is as follows, where the 97-dimensional x_u vector corresponds to the concatenation of the 96-dim embedding vector of user u and of the bias term, and where sigma denotes the sigmoid activation function:

Download complete datasets

Due to size restrictions, this repository only provides the playlist_features.csv dataset and a very small version of the user dataset with 9 users, named user_features_small.csv, in the data folder.

The complete user_features.csv dataset with 974 960 users is available for download on Zenodo.

Please download it there and subsequently place it in the data folder.

Run Offline Experiments

Simulations proceed as detailed in Section 3.2 of the paper.

Type in the following commands to run offline experiments with similar hyperparameters w.r.t. the paper.

General Experiments (Figure 2 of RecSys paper)

Offline evaluation of Top-12 playlist recommendation: expected cumulative regrets of policies over 100 simulated rounds.

Evaluation of all policies on user_features_small.csv (useful for quick testing)

python main.py --users_path data/user_features_small.csv --policies random,etc-seg-explore,etc-seg-exploit,epsilon-greedy-explore,epsilon-greedy-exploit,kl-ucb-seg,ts-seg-naive,ts-seg-pessimistic,ts-lin-naive,ts-lin-pessimistic --n_users_per_round 9 --output_path general_experiment_results.json
python plot_results.py --data_path general_experiment_results.json

Evaluation of two different policies (random, ts-seg-pessimistic) on the complete user_features.csv

python main.py --policies random,ts-seg-pessimistic --print_every 5 --output_path general_experiment_results.json
python plot_results.py --data_path general_experiment_results.json

Evaluation of all policies on the complete user_features.csv (takes some time!)

python main.py --policies random,etc-seg-explore,etc-seg-exploit,epsilon-greedy-explore,epsilon-greedy-exploit,kl-ucb-seg,ts-seg-naive,ts-seg-pessimistic,ts-lin-naive,ts-lin-pessimistic --print_every 1 --output_path general_experiment_results.json
python plot_results.py --data_path general_experiment_results.json

Note on running times: the ts-lin-naive and ts-lin-pessimistic policies might take a few minutes per round on a regular laptop. To speed up computations, you might consider removing them from the list of evaluated policies.

Results should look like:

Important note on ts-lin policies: our implementation of naive and pessimistic linear Thompson Sampling strategies have been improved since the publication of the RecSys paper. As a consequence, regret curves from these two policies are a bit different than in Figure 2 of the paper (results are better). Nonetheless, all conclusions from the article remain valid, especially regarding the comparison with ts-seg-pessimistic, and the comparison among ts-lin-naive and ts-lin-pessimistic.

Cascade vs No-Cascade Experiments (Figure 3 of RecSys paper)

Comparison of cascade vs no-cascade policies for epsilon-greedy and ts-seg-pessimistic policies, over 100 simulated rounds.

We provide comments on our implementation of a cascade-based behaviour for these experiments in policies.py.

python main.py --policies epsilon-greedy-explore,epsilon-greedy-explore-no-cascade,ts-seg-pessimistic,ts-seg-pessimistic-no-cascade --print_every 5 --output_path cascade_experiment_results.json
python plot_results.py --data_path cascade_experiment_results.json

Results should look like:

Complete list of main.py parameters

Parameter Type Description Default Value
users_path string Path to user features file data/user_features.csv
playlists_path string Path to playlist features file data/playlist_features.csv
output_path string Path to a json file to save regret values of each policy accross time results.json
policies string List of bandit policies to evaluate, separated by commas, among:
- random
- etc-seg-explore
- etc-seg-exploit
- epsilon-greedy-explore
- epsilon-greedy-exploit
- kl-ucb-seg
- ts-seg-naive
- ts-seg-pessimistic
- ts-lin-naive
- ts-lin-pessimistic
- epsilon-greedy-explore-no-cascade
- ts-seg_pessimistic-no-cascade
Please see Section 3 of the RecSys paper for details on policies. New policies must be implemented in policies.py and then defined in the set_policies function from main.py.
random,ts-seg-naive
n_recos int Number of slots L in the carousel i.e. number of recommendations that each policy must provide to users at each round 12
l_init int Number of slots L_init initially visible in the carousel 3
n_users_per_round int Number of users drawn on the random subsets of users selected at each round.
Note: users are drawn with replacement, implying that some users might click on several playlists during a same round (multi-armed bandit with multiple plays setting)
20 000
n_rounds int Number of simulated rounds 100
print_every int Print cumulative regrets of all policies every print_every round 10

Cite

Please cite our paper if you use this code or data in your own work:

@inproceedings{bendada2020carousel,
  title={Carousel Personalization in Music Streaming Apps with Contextual Bandits},
  author={Bendada, Walid and Salha, Guillaume and Bontempelli, Theo},
  booktitle={14th ACM Conference on Recommender Systems (RecSys 2020)},
  year={2020}
}
Owner
Deezer
Deezer
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022