Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Related tags

Deep LearningURST
Overview

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Official PyTorch implementation for our URST (Ultra-Resolution Style Transfer) framework.

URST is a versatile framework for ultra-high resolution style transfer under limited memory resources, which can be easily plugged in most existing neural style transfer methods.

With the growth of the input resolution, the memory cost of our URST hardly increases. Theoretically, it supports style transfer of arbitrary high-resolution images.

One ultra-high resolution stylized result of 12000 x 8000 pixels (i.e., 96 megapixels).

This repository is developed based on six representative style transfer methods, which are Johnson et al., MSG-Net, AdaIN, WCT, LinearWCT, and Wang et al. (Collaborative Distillation).

For details see Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization.

If you use this code for a paper please cite:

@misc{chen2021towards,
      title={Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization}, 
      author={Zhe Chen and Wenhai Wang and Enze Xie and Tong Lu and Ping Luo},
      year={2021},
      eprint={2103.11784},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Environment

  • python3.6, pillow, tqdm, torchfile, pytorch1.1+ (for inference)

    pip install pillow
    pip install tqdm
    pip install torchfile
    conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch
  • tensorboardX (for training)

    pip install tensorboardX

Then, clone the repository locally:

git clone https://github.com/czczup/URST.git

Test (Ultra-high Resolution Style Transfer)

Step 1: Prepare images

  • Content images and style images are placed in examples/.
  • Since the ultra-high resolution images are quite large, we not place them in this repository. Please download them from this google drive.
  • All content images used in this repository are collected from pexels.com.

Step 2: Prepare models

  • Download models from this google drive. Unzip and merge them into this repository.

Step 3: Stylization

First, choose a specific style transfer method and enter the directory.

Then, please run the corresponding script. The stylized results will be saved in output/.

  • For Johnson et al., we use the PyTorch implementation Fast-Neural-Style-Transfer.

    cd Johnson2016Perceptual/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --model <model_path> --URST
  • For MSG-Net, we use the official PyTorch implementation PyTorch-Multi-Style-Transfer.

    cd Zhang2017MultiStyle/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For AdaIN, we use the PyTorch implementation pytorch-AdaIN.

    cd Huang2017AdaIN/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For WCT, we use the PyTorch implementation PytorchWCT.

    cd Li2017Universal/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For LinearWCT, we use the official PyTorch implementation LinearStyleTransfer.

    cd Li2018Learning/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For Wang et al. (Collaborative Distillation), we use the official PyTorch implementation Collaborative-Distillation.

    cd Wang2020Collaborative/PytorchWCT/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST

Optional options:

  • --patch_size: The maximum size of each patch. The default setting is 1000.
  • --style_size: The size of the style image. The default setting is 1024.
  • --thumb_size: The size of the thumbnail image. The default setting is 1024.
  • --URST: Use our URST framework to process ultra-high resolution images.

Train (Enlarge the Stroke Size)

Step 1: Prepare datasets

Download the MS-COCO 2014 dataset and WikiArt dataset.

  • MS-COCO

    wget http://msvocds.blob.core.windows.net/coco2014/train2014.zip
  • WikiArt

    • Either manually download from kaggle.
    • Or install kaggle-cli and download by running:
    kg download -u <username> -p <password> -c painter-by-numbers -f train.zip

Step 2: Prepare models

As same as the Step 2 in the test phase.

Step 3: Train the decoder with our stroke perceptual loss

  • For AdaIN:

    cd Huang2017AdaIN/
    CUDA_VISIBLE_DEVICES=<gpu_id> python trainv2.py --content_dir <coco_path> --style_dir <wikiart_path>
  • For LinearWCT:

    cd Li2018Learning/
    CUDA_VISIBLE_DEVICES=<gpu_id> python trainv2.py --contentPath <coco_path> --stylePath <wikiart_path>

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Owner
czczup
Knowledge is infinite.
czczup
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023