Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Overview

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Paper: arXiv (ICRA 2021)

Video : https://youtu.be/CCDms7KWgI8

System figure


Shared resources


Testing / Evaluation

  1. Setup repository
    • Download test dataset, floorplans and pretrained model to <data>, <floorplan>, and <model> folders.
    • Download this repository. Copy source/sample_data_paths.json as source/data_paths.json and specify default paths.
    • For next steps, we will show example commands for one test datafile. See relevant code for more configuration options.
  2. IMU and WiFi Fusion by Optimization
    • Run source/optim/optimizer.py to geolocalize trajectory with floorplan
    • Sample command: python optimizer.py --out_dir <optimize_out_dir> --data_path <data_folder_path> --loop --no_gui --map_path <path_to_map_image> --map_latlong_path <path_to_csv_with_image_latlong_mapping>
    • E.g. : python optimizer.py --out_dir <output>/optim_s1 --data_path <data>/a001_d1_metrotown_0g --map_path <floorplan>/metrotown_0g.png --loop --no_gui
  3. Floorplan fusion by CNN
    • Run source/nn/nn_eval_full_traj.py for CNN prediction.
    • Sample command: python nn_eval_full_traj.py --floorplan_dir <directory_with_floorplan_images> --floorplan_dpi <floorplan_resolution> --input_dpi <resolution_suitable_for_network> --test_path <optimize_out_dir/data_folder> --out_dir <flow_out_dir> --model_path <fusion_dhl_cnn_checkpoint>
    • E.g. : python nn_eval_full_traj.py --floorplan_dir <floorplan> --test_path <output>/optim_s1/a001_d1_metrotown_0g --out_dir <output>/flow_s1 --model_path <model>/ckpt_fusion_dhl_unet.pt
  4. Run second iteration of optimization with prediction of 2.
    • Run source/optim/optimizer_with_flow.py
    • Sample command: python optimizer_with_flow.py --out_dir <optimize2_out_dir> --data_path <data_folder_path> --map_path <path_to_map_image> --result_dir <flow_out_dir> --loop --no_gui
    • E.g.: python optimizer_with_flow.py --out_dir <output>/optim_s2 --data_path <data>/a001_d1_metrotown_0g --map_path <floorplan>/metrotown_0g.png --result_dir <output>/flow_s1/output/full_result --loop --no_gui
  5. Repeat step 2 with results of 3 as test path --test_path <optimize2_out_dir/data_folder>
    • E.g.: python nn_eval_full_traj.py --floorplan_dir <floorplan> --test_path <output>/optim_s2/a001_d1_metrotown_0g --out_dir <output>/flow_s2 --model_path <model>/ckpt_fusion_dhl_unet.pt

Using your own dataset

The data collection, pre-processing and training steps are listed below. After completion, run testing/evaluation steps with the relevant paths

Data collection

  1. Create floorplan image according to the speicifed format and a known resolution. (Resolution must be chosen in such a way that cropped squares of size 250 by 250 pixel from the floorplan image have multiple rooms/corridors in them. The bigger the rooms, the smaller pixel/meter. We chose 2.5 pixels per meter for the shared dataset which are from shopping malls)
  2. Install Custom Maps app from apk or source and create map by aligning floorplan with google maps
    • During data collection, select map of current floorplan and manually click the current location at sparse points for evaluation.
  3. Put floorplans for training set, and floorplans for test purpose in separate folders and copy source/sample_map_info.json as map_info.json in these folders and specify the floorplan and image names.
  4. Install Sensor Data Logger app and click start service to record data
    • disable battery optimization for the app upon installation
    • location, WiFi and bluetooth needs to be switched on for data collection.
  5. Copy Sensor_Data_Logger output (in Downloads) to computer. Copy relevant Custom_Maps output files (in Downloads/mapLocalize) to a new folder named map inside the copied folder.

Data Preprocessing

  1. Download this repository. Copy source/sample_data_paths.json as source/data_paths.json and specify default paths.
  2. Download RoNIN resnet model checkpoint from the website
  3. Run source/preprocessing/compile_dataset.py to preprocess data into synced data streams and save as hdf5 files.
  4. Generate synthetic data (for training CNN)
    • Run source/gui/synthetic_data_generator.py to generate synthetic data by hand-drawing paths on a map
    • E.g. python synthetic_data_generator.py <path_to_map_image> --map_dpi <pixels_per_meter> --out_dir <path_to_directory> --add_noise
  5. For training groundtruth, run source/optim/optimizer with gui and manually specify constraints (if necessary) until the trajectory looks correct. (command in testing/evaluation)

Floorplan fusion by CNN

  1. Preprocess training data:
    • run source/nn/data_generator_train_real.py and source/nn/data_generator_train_syn.py with mode argument to generate real and synthetic dataset suitable for training the Neural Network. Please refer to the source code for the full list of command line arguments. Change _dpi to the pixel per meter resolution of your floorplan image.
    • Example command for real data generation: python3 data_generator_train_real.py --run_type 'full' --save_all_figs True --data_dir <path-to-real-data-folder> --datalist_file <path-to-list-of-real-data> --floorplans_dir <path-to-train-floorplans> --out_dir <path-to-output-real-dataset-folder>.
    • Example command for synthetic data generation: python3 data_generator_train_syn.py --save_all_figs True --data_dir <path-to-synthetic-data-folder-for-specific-floorplan> --datalist_file <path-to-list-of-synthetic-data-for-specific-floorplan> --floorplans_dir <path-to-floorplans> --out_dir <path-to-output-synthetic-dataset-folder> --which_mall <name-of-the-specific-floorplan>.
  2. Training
    • Run source/nn/nn_train.py to train or test the CNN. Please refer to the source code for the full list of command line arguments and their descriptions.
    • E.g. command for training: python3 nn_train.py --real_floorplans <path_to_real_data's_floorplans> --real_train_list <path_to_real_train_data_list> --real_val_list <path_to_real_validation_data_list> --real_dataset <path_to_real_dataset_from_previous_part> --syn_floorplans <path_to_synthetic_data's_floorplans> --syn_train_list <path_to_synthetic_train_data_list> --syn_val_list <path_to_synthetic_validation_data_list> --syn_dataset <path_to_synthetic_dataset_from_previous_part> --out_dir <path_to_outputs> --mode 'train'
    • E.g. command for testing: python3 nn_train.py --real_floorplans <path_to_real_data's_floorplans> --real_test_list <path_to_real_test_data_list> --real_dataset <path_to_real_dataset_from_previous_part> --syn_floorplans <path_to_synthetic_data's_floorplans> --syn_test_list <path_to_synthetic_test_datalist> --syn_dataset <path_to_synthetic_dataset_from_previous_part> --out_dir <path_to_outputs> --mode <'test_plot_flow'/'test_plot_traj'> --continue_from <path_to_saved_model>
    • Pretrained model

Citation

Please cite the following paper is you use the code, paper, data or any shared resources:

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments
Sachini Herath, Saghar Irandoust, Bowen Chen, Yiming Qian, Pyojin Kim and Yasutaka Furukawa
2021 IEEE International Conference on Robotics and Automation (ICRA) 
Owner
Sachini Herath
Sachini Herath
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022