Scene-Text-Detection-and-Recognition (Pytorch)

Overview

Scene-Text-Detection-and-Recognition (Pytorch)

1. Proposed Method

The models

Our model comprises two parts: scene text detection and scene text recognition. the descriptions of these two models are as follow:

  • Scene Text Detection
    We employ YoloV5 [1] to detect the ROI (Region Of Interest) from an image and Resnet50 [2] to implement the ROI transformation algorithm. This algorithm transforms the coordinates detected by YoloV5 to the proper location, which fits the text well. YoloV5 can detect all ROIs that might be strings while ROI transformation can make the bbox more fit the region of the string. The visualization result is illustrated below, where the bbox of the dark green is ROI detected by YoloV5 and the bbox of the red is ROI after ROI transformation.

  • Scene Text Recognition
    We employ ViT [3] to recognize the string of bbox detected by YoloV5 since our task is not a single text recognition. The transformer-based model achieves the state-of-the-art performance in Natural Language Processing (NLP). The attention mechanism can make the model pay attention to the words that need to be output at the moment. The model architecture is demonstrated below.

The whole training process is shown in the figure below.

Data augmentation

  • Random Scale Resize
    We found that the sizes of the images in the public dataset are different. Therefore, if we resize the small image to the large, most of the image features will be lost. To solve this problem, we apply the random scale resize algorithm to obtain the low-resolution image from the high-resolution image in the training phase. The visualization results are demonstrated as follows.
Original image 72x72 --> 224x224 96x96 --> 224x224 121x121 --> 224x224 146x146 --> 224x224 196x196 --> 224x224
  • ColorJitter
    In the training phase, the model's input is RGB channel. To enhance the reliability of the model, we appply the collorjitter algorithm to make the model see the images with different contrast, brightness, saturation and hue value. And this kind of method is also widely used in image classification. The visualization results are demonstrated as follows.
Input image brightness=0.5 contrast=0.5 saturation=0.5 hue=0.5 brightness=0.5 contrast=0.5 saturation=0.5 hue=0.5
  • Random Rotaion
    After we observe the training data, we found that most of the images in training data are square-shaped (original image), while some of the testing data is a little skewed. Therefore, we apply the random rotation algorithm to make the model more generalization. The visualization results are demonstrated as follows.
Original image Random Rotation Random Horizontal Flip Both

2. Demo

  • Predicted results
    Before we recognize the string bbox detected by YoloV5, we filter out the bbox with a size less than 45*45. Because the image resolution of a bbox with a size less than 45*45 is too low to recognize the correct string.
Input image Scene Text detection Scene Text recognition
驗車
委託汽車代檢
元力汽車公司
新竹區監理所
3c配件
玻璃貼
專業包膜
台灣大哥大
myfone
新店中正
加盟門市
西門町

排骨酥麵
非常感謝
tvbs食尚玩家
蘋果日報
壹週刊
財訊
錢櫃雜誌
聯合報
飛碟電台
等報導
排骨酥專賣店
西門町

排骨酥麵
排骨酥麵
嘉義店
永晟
電動工具行
492913338
  • Attention maps in ViT
    We also visualize the attention maps in ViT, to check whether the model focus on the correct location of the image. The visualization results are demonstrated as follows.
Original image Attention map

3. Competition Results

  • Public Scores
    We conducted extensive experiments, and The results are demonstrated below. From the results, we can see the improvement of the results by adding each module at each stage. At first, we only employed YoloV5 to detect all the ROI in the images, and the result of detection is not good enough. We also compare the result of ViT with data augmentation or not, the results show that our data augmentation is effective to solve this task (compare the last row and the sixth row). In addition, we filter out the bbox with a size less than 45*45 since the resolution of bbox is too low to recognize the correct strings.
Models(Detection/Recognition) Final score Precision Recall
YoloV5(L) / ViT(aug) 0.60926 0.7794 0.9084
YoloV5(L) +
ROI_transformation(Resnet50) / ViT(aug)
0.73148 0.9261 0.9017
YoloV5(L) +
ROI_transformation(Resnet50) +
reduce overlap bbox / ViT(aug)
0.78254 0.9324 0.9072
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug)
0.78527 0.9324 0.9072
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(40 * 40)
0.79373 0.9333 0.9029
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(45 * 45)
0.79466 0.9335 0.9011
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(50 * 50)
0.79431 0.9338 0.8991
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(no aug) + filter bbox(45 * 45)
0.73802 0.9335 0.9011
  • Private Scores
Models(Detection/Recognition) Final score Precision Recall
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(40 * 40)
0.7828 0.9328 0.8919
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(45 * 45)
0.7833 0.9323 0.8968
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(50 * 50)
0.7830 0.9325 0.8944

4. Computer Equipment

  • System: Windows10、Ubuntu20.04

  • Pytorch version: Pytorch 1.7 or higher

  • Python version: Python 3.6

  • Testing:
    CPU: AMR Ryzen 7 4800H with Radeon Graphics RAM: 32GB
    GPU: NVIDIA GeForce RTX 1660Ti 6GB

  • Training:
    CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
    RAM: 256GB
    GPU: NVIDIA GeForce RTX 3090 24GB * 2

5. Getting Started

  • Clone this repo to your local
git clone https://github.com/come880412/Scene-Text-Detection-and-Recognition.git
cd Scene-Text-Detection-and-Recognition

Download pretrained models

  • Scene Text Detection
    Please download pretrained models from Scene_Text_Detection. There are three folders, "ROI_transformation", "yolo_models" and "yolo_weight". First, please put the weights in "ROI_transformation" to the path ./Scene_Text_Detection/Tranform_card/models/. Second, please put all the models in "yolo_models" to the ./Scene_Text_Detection/yolov5-master/. Finally, please put the weight in "yolo_weight" to the path ./Scene_Text_Detection/yolov5-master/runs/train/expl/weights/.

  • Scene Text Recogniton
    Please download pretrained models from Scene_Text_Recognition. There are two files in this foler, "best_accuracy.pth" and "character.txt". Please put the files to the path ./Scene_Text_Recogtion/saved_models/.

Inference

  • You should first download the pretrained models and change your path to ./Scene_Text_Detection/yolov5-master/
$ python Text_detection.py
  • The result will be saved in the path '../output/'. Where the folder "example" is the images detected by YoloV5 and after ROI transformation, the file "example.csv" records the coordinates of the bbox, starting from the upper left corner of the coordinates clockwise, respectively (x1, y1), (x2, y2), (x3, y3), and (x4, y4), and the file "exmaple_45.csv" is the predicted result.
  • If you would like to visualize the bbox detected by yoloV5, you can use the function public_crop() in the script ../../data_process.py to extract the bbox from images.

Training

  • You should first download the dataset provided by official, then put the data in the path '../dataset/'. After that, you could use the following script to transform the original data to the training format.
$ python data_process.py
  • Scene_Text_Detection
    There are two models for the scene text detection task: ROI transformation and YoloV5. You could use the follow script to train these two models.
$ cd ./Scene_Text_Detection/yolov5-master # YoloV5
$ python train.py

$ cd ../Tranform_card/ # ROI Transformation
$ python Trainer.py
  • Scene_Text_Recognition
$ cd ./Scene_Text_Recogtion # ViT for text recognition
$ python train.py

References

[1] https://github.com/ultralytics/yolov5
[2] https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
[3] https://github.com/roatienza/deep-text-recognition-benchmark
[4] https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
[5] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).

Owner
Gi-Luen Huang
Gi-Luen Huang
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
MohammadReza Sharifi 27 Dec 13, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022