PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

Overview

PRAnCER

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of text and quickly map them to concepts in large vocabularies within a single, intuitive platform. Users can use the search and recommendation features to find labels without ever needing to leave the interface. Further, the platform can take in output from existing clinical concept extraction systems as pre-annotations, which users can accept or modify in a single click. These features allow users to focus their time and energy on harder examples instead.

Usage

Installation Instructions

Detailed installation instructions are provided below; PRAnCER can operate on Mac, Windows, and Linux machines.

Linking to UMLS Vocabulary

Use of the platform requires a UMLS license, as it requires several UMLS-derived files to surface recommendations. Please email magrawal (at) mit (dot) edu to request these files, along with your API key so we may confirm. You can sign up here. Surfacing additional information in the UI also requires you enter your UMLS API key in application/utils/constants.py.

Loading in and Exporting Data

To load in data, users directly place any clinical notes as .txt files in the /data folder; an example file is provided. The output of annotation is .json file in the /data folder with the same file prefix as the .txt. To start annotating a note from scratch, a user can just delete the corresponding .json file.

Pre-filled Suggestions

Two options exist for pre-filled suggestions; users specify which they want to use in application/utils/constants.py. The default is "MAP". Option 1 for pre-filled suggestions is "MAP", if users want to preload annotations based on a dictionary of high-precision text to CUI for their domain, e.g. {hypertension: "C0020538"}. A pre-created dictionary will be provided alongside the UMLS files described above. Option 2 for pre-filled suggestions is "CSV", if users want to load in pre-computed pre-annotations (e.g. from their own algorithm, scispacy, cTAKES, MetaMap). Users simply place a CSV of spans and CUIs, with the same prefix as the data .txt file, and our scripts will automatically incorporate those annotations. example.csv in the /data file provides an example.

Installation

The platform requires python3.7, node.js, and several other python and javascript packages. Specific installation instructions for each follow!

Backend requirements

1) First check if python3 is installed.

You can check to see if it is installed:

$ python3 --version

If it is installed, you should see Python 3.7.x

If you need to install it, you can easily do that with a package manager like Homebrew:

$ brew install python3

2) With python3 installed, install necessary python packages.

You can install packages with the python package installer pip:

$ pip3 install flask flask_script flask_migrate flask_bcrypt nltk editdistance requests lxml

Frontend requirements

3) Check to see if npm and node.js are installed:

$ npm -v
$ node -v

If they are, you can skip to Step 4. If not, to install node, first install nvm:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.1/install.sh | bash

Source: https://github.com/nvm-sh/nvm

Re-start your terminal and confirm nvm installation with:

command -v nvm

Which will return nvm if successful

Then install node version 10.15.1:

$ nvm install 10.15.1

4) Install the node dependencies:

$ cd static
$ npm install --save

For remote server applications, permissions errors may be triggered.
If so, try adding --user to install commands.

Run program

Run the backend

Open one terminal tab to run the backend server:

$ python3 manage.py runserver

If all goes well, you should see * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit) followed by a few more lines in the terminal.

Run the frontend

Open a second terminal tab to run the frontend:

$ cd static
$ npm start

After this, open your browser to http://localhost:3000 and you should see the homepage!

Contact

If you have any questions, please email Monica Agrawal [[email protected]]. Credit belongs to Ariel Levy for the development of this platform.

Based on React-Redux-Flask boilerplate.

Owner
Sontag Lab
Machine learning algorithms and applications to health care.
Sontag Lab
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
1 Jun 28, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

AI2 11.4k Jan 01, 2023
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
Deep Learning Topics with Computer Vision & NLP

Deep learning Udacity Course Deep Learning Topics with Computer Vision & NLP for the AWS Machine Learning Engineer Nanodegree Program Tasks are mostly

Simona Mircheva 1 Jan 20, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022