FairFuzz: AFL extension targeting rare branches

Related tags

Deep Learningafl-rb
Overview

FairFuzz

An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested structure (packet analyzers, xmllint, programs compiled with laf-inte, etc). AFL is written and maintained by Michal Zalewski [email protected]; FairFuzz extension by Caroline Lemieux [email protected].

Our paper on FairFuzz was published in ASE 2018.

Summary

This is a modified version of AFL which changes (1) the way in which AFL selects input for mutation and (2) the way in which AFL mutates inputs to target rare "branches" in the program under test. AFL keeps track of program coverage an input achieves by counting the number of times the input hits a Basic Block Transition (see AFL technical details for more detail). This basic block transition can be loosely associated with a branch in the control flow graph, thus we call refer to these transitions as branches.

On many benchmarks, this modification achieves faster branch coverage than AFL or AFLFast. The advantage seems particularly strong on programs structured with many nested conditional statements. The graphs below show the number of basic block transitions covered over 24 hours on 9 different benchmarks. Each run was repeated 20 times (one fuzzer only): the dark middle line is the average coverage achieved, and the bands represent 95% confidence intervals.

24 hour runs on benchmarks

Evaluation was conducted on on AFL 2.40b. All runs were done with no AFL dictionary: the emphasis on rare branches appears to yield better automated discovery of special sequences. On the tcpdump and xmllint benchmarks, FairFuzz was able to discover rare sequences over the 20 runs, which the other techniques did not discover. Over these 20 techniques each different technique, the number of runs finding portions of the sequence <!ATTLIST after 24 hours was:

subsequence AFL FidgetyAFL AFLFast.new FairFuzz
<!A 7 15 18 17
<!AT 1 2 3 11
<!ATT 1 0 0 1

More details in article.

Technical Summary

What is a rare branch?

We consider a branch to be rare if it is hit by fewer inputs than the other branches explored so far. We maintain a dynamic threshold for rarity: if a branch is hit by fewer inputs than (or exactly as many as) this threshold, it is rare. Precisely, the threshold is the lowest power of two bounding the number of inputs hitting the least-hit branch. For example, if the branch hit by the fewest inputs is hit by 19 inputs, the threshold will be 32, so any branch hit by ≤32 inputs will be rare. Once the rarest branch is hit by 33 inputs, the threshold will go up to 64.

To keep track of rarity information, after running every input, we increment a hit count for each branch.

How are inputs hitting rare branches selected?

When going through the queue to select inputs to mutate, FairFuzz selects inputs only if -- at the time of selection -- they hit a rare branch. The rare branch an input hits is selected as the target branch. If an input hits multiple rare branches, FairFuzz selects the rarest one (the one hit by the fewest inputs) as the target branch. If an input hits no rare branches, it is skipped (see the -q option below).

How are mutations targeted to a branch?

Once an input is selected from the queue, along with its designated target branch, FairFuzz computes a branch mask for the target branch. For every position in the input, the branch mask designates whether

  1. the byte at that position can be overwritten (overwritable),
  2. the byte at that position can be deleted (deleteable), or
  3. a byte can be inserted at that position (insertable),

while still hitting the target branch. FairFuzz computes an approximation to this branch mask dynamically, in a way similar to AFL's effector map. FairFuzz goes through the input, and at each position flips the byte, deletes the byte, or inserts a byte, then runs the mutated input to check whether it hits the target branch. If the mutated input hits the target branch, the position is marked as overwritable, deleteable, or insertable, respectively.

The branch mask is then used to influence mutations as follows:

  1. In the deterministic stages1, a mutation is only performed at a location if the branch mask designates the position as overwritable (or insertable, for dictionary element insert). For multi-byte modifications, a modification is only performed if all bytes are overwritable. The mask is used in conjunction with the effector map when the effector map is used.
  2. In the havoc stage, positions for mutations are randomly selected within the modifiable positions of the branch mask. For example, if bytes 5-10 and 13-20 in a 20-byte input can be overwritten without failing to hit the target branch, when randomly selecting a byte to randomly mutate, FairFuzz will randomly select a position in [5,6,7,8,9,10,13,...,20] to mutate. After a havoc mutation that deletes (resp. adds) a sequence of bytes in the input, FairFuzz deletes the sequence (resp. adds an "all modifiable" sequence) at the corresponding location in the branch mask.2 The branch mask becomes approximate after this point.

1 The mask is not used in the bitflipping stage since this would interfere with AFL's automatic detection of dictionary elements.

2 The mask is not used to determine where to splice inputs in the splicing stage: during splicing, the first part of the branch mask is kept, but the spliced half of the input is marked as all modifiable.

Usage summary

For basic AFL usage, see the README in docs/ (the one with no .md extension). There are four FairFuzz Rare Branches-specific options:

Running options (may be useful for functionality):

  • -r adds an additional trimming stage before mutating inputs. This trimming is more aggressive than AFL's, trimming the input down only according to the target branch -- the resulting trimmed input may have a different path than the original input, but will still hit the target branch. Recommended for use if there are very large seed files and deterministic mutations are being run.
  • -q num bootstraps the rare branch input selection from the queue with the regular AFL input selection mechanism. If after an entire cycle through the queue, no new branches are discovered, bootstrap according to num as follows:
    • -q 1 go back to regular AFL queueing + no branch mask on mutations until a new branch is found
    • -q 2 go back to regular AFL queueing + no branch mask on mutations + no deterministic mutations until a new branch is found
    • -q 3 go back to regular AFL queueing + no branch mask on mutations for a single queueing cycle

Evaluation options (mostly useful for comparing AFL versions):

  • -b disables the branch mask. (sets every position in the mask as modifiable -- will incur unnecessary slowdown compared to AFL)
  • -s runs a "shadow" mutation run before the branch-mask enabled run. Side effects are disabled in this run. This allows for direct comparison of the effect of the branch mask on new coverage discovered/number of inputs hitting the target branch. See min-branch-fuzzing.log produced in the AFL output directory for details.
Owner
Caroline Lemieux
Caroline Lemieux
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022