FairFuzz: AFL extension targeting rare branches

Related tags

Deep Learningafl-rb
Overview

FairFuzz

An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested structure (packet analyzers, xmllint, programs compiled with laf-inte, etc). AFL is written and maintained by Michal Zalewski [email protected]; FairFuzz extension by Caroline Lemieux [email protected].

Our paper on FairFuzz was published in ASE 2018.

Summary

This is a modified version of AFL which changes (1) the way in which AFL selects input for mutation and (2) the way in which AFL mutates inputs to target rare "branches" in the program under test. AFL keeps track of program coverage an input achieves by counting the number of times the input hits a Basic Block Transition (see AFL technical details for more detail). This basic block transition can be loosely associated with a branch in the control flow graph, thus we call refer to these transitions as branches.

On many benchmarks, this modification achieves faster branch coverage than AFL or AFLFast. The advantage seems particularly strong on programs structured with many nested conditional statements. The graphs below show the number of basic block transitions covered over 24 hours on 9 different benchmarks. Each run was repeated 20 times (one fuzzer only): the dark middle line is the average coverage achieved, and the bands represent 95% confidence intervals.

24 hour runs on benchmarks

Evaluation was conducted on on AFL 2.40b. All runs were done with no AFL dictionary: the emphasis on rare branches appears to yield better automated discovery of special sequences. On the tcpdump and xmllint benchmarks, FairFuzz was able to discover rare sequences over the 20 runs, which the other techniques did not discover. Over these 20 techniques each different technique, the number of runs finding portions of the sequence <!ATTLIST after 24 hours was:

subsequence AFL FidgetyAFL AFLFast.new FairFuzz
<!A 7 15 18 17
<!AT 1 2 3 11
<!ATT 1 0 0 1

More details in article.

Technical Summary

What is a rare branch?

We consider a branch to be rare if it is hit by fewer inputs than the other branches explored so far. We maintain a dynamic threshold for rarity: if a branch is hit by fewer inputs than (or exactly as many as) this threshold, it is rare. Precisely, the threshold is the lowest power of two bounding the number of inputs hitting the least-hit branch. For example, if the branch hit by the fewest inputs is hit by 19 inputs, the threshold will be 32, so any branch hit by ≤32 inputs will be rare. Once the rarest branch is hit by 33 inputs, the threshold will go up to 64.

To keep track of rarity information, after running every input, we increment a hit count for each branch.

How are inputs hitting rare branches selected?

When going through the queue to select inputs to mutate, FairFuzz selects inputs only if -- at the time of selection -- they hit a rare branch. The rare branch an input hits is selected as the target branch. If an input hits multiple rare branches, FairFuzz selects the rarest one (the one hit by the fewest inputs) as the target branch. If an input hits no rare branches, it is skipped (see the -q option below).

How are mutations targeted to a branch?

Once an input is selected from the queue, along with its designated target branch, FairFuzz computes a branch mask for the target branch. For every position in the input, the branch mask designates whether

  1. the byte at that position can be overwritten (overwritable),
  2. the byte at that position can be deleted (deleteable), or
  3. a byte can be inserted at that position (insertable),

while still hitting the target branch. FairFuzz computes an approximation to this branch mask dynamically, in a way similar to AFL's effector map. FairFuzz goes through the input, and at each position flips the byte, deletes the byte, or inserts a byte, then runs the mutated input to check whether it hits the target branch. If the mutated input hits the target branch, the position is marked as overwritable, deleteable, or insertable, respectively.

The branch mask is then used to influence mutations as follows:

  1. In the deterministic stages1, a mutation is only performed at a location if the branch mask designates the position as overwritable (or insertable, for dictionary element insert). For multi-byte modifications, a modification is only performed if all bytes are overwritable. The mask is used in conjunction with the effector map when the effector map is used.
  2. In the havoc stage, positions for mutations are randomly selected within the modifiable positions of the branch mask. For example, if bytes 5-10 and 13-20 in a 20-byte input can be overwritten without failing to hit the target branch, when randomly selecting a byte to randomly mutate, FairFuzz will randomly select a position in [5,6,7,8,9,10,13,...,20] to mutate. After a havoc mutation that deletes (resp. adds) a sequence of bytes in the input, FairFuzz deletes the sequence (resp. adds an "all modifiable" sequence) at the corresponding location in the branch mask.2 The branch mask becomes approximate after this point.

1 The mask is not used in the bitflipping stage since this would interfere with AFL's automatic detection of dictionary elements.

2 The mask is not used to determine where to splice inputs in the splicing stage: during splicing, the first part of the branch mask is kept, but the spliced half of the input is marked as all modifiable.

Usage summary

For basic AFL usage, see the README in docs/ (the one with no .md extension). There are four FairFuzz Rare Branches-specific options:

Running options (may be useful for functionality):

  • -r adds an additional trimming stage before mutating inputs. This trimming is more aggressive than AFL's, trimming the input down only according to the target branch -- the resulting trimmed input may have a different path than the original input, but will still hit the target branch. Recommended for use if there are very large seed files and deterministic mutations are being run.
  • -q num bootstraps the rare branch input selection from the queue with the regular AFL input selection mechanism. If after an entire cycle through the queue, no new branches are discovered, bootstrap according to num as follows:
    • -q 1 go back to regular AFL queueing + no branch mask on mutations until a new branch is found
    • -q 2 go back to regular AFL queueing + no branch mask on mutations + no deterministic mutations until a new branch is found
    • -q 3 go back to regular AFL queueing + no branch mask on mutations for a single queueing cycle

Evaluation options (mostly useful for comparing AFL versions):

  • -b disables the branch mask. (sets every position in the mask as modifiable -- will incur unnecessary slowdown compared to AFL)
  • -s runs a "shadow" mutation run before the branch-mask enabled run. Side effects are disabled in this run. This allows for direct comparison of the effect of the branch mask on new coverage discovered/number of inputs hitting the target branch. See min-branch-fuzzing.log produced in the AFL output directory for details.
Owner
Caroline Lemieux
Caroline Lemieux
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022