Extracts data from the database for a graph-node and stores it in parquet files

Overview

subgraph-extractor

Extracts data from the database for a graph-node and stores it in parquet files

Installation

For developing, it's recommended to use conda to create an environment.

Create one with python 3.9

conda create --name subgraph-extractor python=3.9

Now activate it

conda activate subgraph-extractor

Install the dev packages (note there is no space after the .)

pip install -e .[dev]

Use

Now you can use the main entrypoint, see help for more details

subgraph_extractor --help

Creating a config files

The easiest way to start is to use the interactive subgraph config generator.

Start by launching the subgraph config generator with the location you want to write the config file to.

subgraph_config_generator --config-location subgraph_config.yaml

It will default to using a local graph-node with default username & password (postgresql://graph-node:[email protected]:5432/graph-node) If you are connecting to something else you need to specify the database connection string with --database-string.

You will then be asked to select:

  • The relevant subgraph
  • From the subgraph, which tables to extract (multi-select)
  • For each table, which column to partition on (this is typically the block number or timestamp)
  • Any numeric columns that require mapping to another type * see note below

Numeric column mappings

Uint256 is a common data type in contracts but rare in most data processing tools. The graph node creates a Postgres Numeric column for any field marked as a BigInt as it is capable of accurately storing uint256s (a common data type in solidity).

However, many downstream tools cannot handle these as numbers.

By default, these columns will be exported as bytes - a lossless representation but one that is not as usable for sums, averages, etc. This is fine for some data, such as addresses or where the field is used to pack data (e.g. the tokenIds for decentraland).

For other use cases, the data must be converted to another type. In the config file, you can specify numeric columns that need to be mapped to another type:

column_mappings:
  my_original_column_name:
    my_new_column_name:
      type: uint64

However, if the conversion does not work (e.g. the number is too large), the extraction will stop with an error. This is fine for cases where you know the range (e.g. timestamp or block number). For other cases you can specify a maximum value, default and a column to store whether the row was at most the maximum value:

column_mappings:
  my_original_column_name:
    my_new_column_name:
      type: uint64
      max_value: 18446744073709551615
      default: 0
      validity_column: new_new_column_name_valid

If the number is over 18446744073709551615, there will be a 0 stored in the column my_new_column_name and FALSE stored in new_new_column_name_valid.

If your numbers are too large but can be safely lowered for your usecase (e.g. converting from wei to gwei) you can provide a downscale value:

column_mappings:
  transfer_fee_wei:
    transfer_fee_gwei:
      downscale: 1000000000
      type: uint64
      max_value: 18446744073709551615
      default: 0
      validity_column: transfer_fee_gwei_valid

This will perform an integer division (divide and floor) the original value. WARNING this is a lossy conversion.

You may have as many mappings for a single column as you want, and the original will always be present as bytes.

The following numeric types are allowed:

  • int8, int16, int32, int64
  • uint8, uint16, uint32, uint64
  • float32, float64
  • Numeric38 (this is a numeric/Decimal column with 38 digits of precision)

Contributing

Please format everything with black and isort

black . && isort --profile=black .
Owner
Cardstack
Experience Web 3.0.
Cardstack
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022