Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Overview

Neural Fields in Visual Computing—Complementary Webpage

This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Citation

If you find our project helpful, please cite our review paper:

@article{xie2021neuralfield,
    title = {Neural Fields in Visual Computing and Beyond},
    author = {Yiheng Xie and Towaki Takikawa and Shunsuke Saito and Or Litany and Shiqin Yan and Numair Khan
    and Federico Tombari and James Tompkin and Vincent Sitzmann and Srinath Sridhar},
    booktitle = {ArXiv Pre-print},
    year = {2021} 
}

Adding a paper—How To

See our website instructions

Website Team—Get Started on Development

> pip install -r requirements.txt
> make run

When you are ready to deploy run make freeze to get a static version of the site in the build folder.

Deploying to Github

  • Define two command-line variables GH_TOKEN and GH_REF. GH_TOKEN is your Github personal access token, and will look like username:token. GH_REF is the location of this repo, e.g., $> export GH_REF=github.com/brownvc/neural-fields-review.
  • DO NOT add GH_TOKEN to the Makefile—this is your personal access token and should be kept private. Hence, declare a temporary command line variable using export.
  • Commit any changes. Any uncommited changes will be OVERWRITTEN!
  • Execute make deploy.
  • That's it. The page is now live here.

Tour

The repo contains:

  1. Datastore sitedata/

Collection of CSV files representing the papers, speakers, workshops, and other important information for the conference.

  1. Routing main.py

One file flask-server handles simple data preprocessing and site navigation.

  1. Templates templates/

Contains all the pages for the site. See base.html for the master page and components.html for core components.

  1. Frontend static/

Contains frontend components like the default css, images, and javascript libs.

  1. Scripts scripts/

Contains additional preprocessing to add visualizations, recommendations, schedules to the conference.

  1. For importing calendars as schedule see scripts/README_Schedule.md

Extensions

MiniConf is designed to be a completely static solution. However it is designed to integrate well with dynamic third-party solutions. We directly support the following providers:

  • Rocket.Chat: The chat/ directory contains descriptions for setting up a hosted Rocket.Chat instance and for embedding chat rooms on individual paper pages. You can either buy a hosted setting from Rocket.chat or we include instructions for running your own scalable instance through sloppy.io.

  • Auth0 : The code can integrate through Auth0.com to provide both page login (through javascript gating) and OAuth SSO with Rocket Chat. The documentation on Auth0 is very easy to follow, you simply need to create an Application for both the MiniConf site and the Rocket.Chat server. You then enter in the Client keys to the appropriate configs.

  • SlidesLive: It is easy to embedded any video provider -> YouTube, Vimeo, etc. However we have had great experience with SlidesLive and recommend them as a host. We include a slideslive example on the main page.

  • PDF.js: For conferences that use posters it is easy to include an embedded pdf on poster pages. An example is given.

Owner
Brown University Visual Computing Group
Brown University Visual Computing Group
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022