Fast 1D and 2D histogram functions in Python

Overview

Azure Status asv

About

Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, and can handle for example non-regular binning, but this versatility comes at the expense of performance.

The fast-histogram mini-package aims to provide simple and fast histogram functions for regular bins that don't compromise on performance. It doesn't do anything complicated - it just implements a simple histogram algorithm in C and keeps it simple. The aim is to have functions that are fast but also robust and reliable. The result is a 1D histogram function here that is 7-15x faster than numpy.histogram, and a 2D histogram function that is 20-25x faster than numpy.histogram2d.

To install:

pip install fast-histogram

or if you use conda you can instead do:

conda install -c conda-forge fast-histogram

The fast_histogram module then provides two functions: histogram1d and histogram2d:

from fast_histogram import histogram1d, histogram2d

Example

Here's an example of binning 10 million points into a regular 2D histogram:

In [1]: import numpy as np

In [2]: x = np.random.random(10_000_000)

In [3]: y = np.random.random(10_000_000)

In [4]: %timeit _ = np.histogram2d(x, y, range=[[-1, 2], [-2, 4]], bins=30)
935 ms ± 58.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [5]: from fast_histogram import histogram2d

In [6]: %timeit _ = histogram2d(x, y, range=[[-1, 2], [-2, 4]], bins=30)
40.2 ms ± 624 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

(note that 10_000_000 is possible in Python 3.6 syntax, use 10000000 instead in previous versions)

The version here is over 20 times faster! The following plot shows the speedup as a function of array size for the bin parameters shown above:

Comparison of performance between Numpy and fast-histogram

as well as results for the 1D case, also with 30 bins. The speedup for the 2D case is consistently between 20-25x, and for the 1D case goes from 15x for small arrays to around 7x for large arrays.

Q&A

Why don't the histogram functions return the edges?

Computing and returning the edges may seem trivial but it can slow things down by a factor of a few when computing histograms of 10^5 or fewer elements, so not returning the edges is a deliberate decision related to performance. You can easily compute the edges yourself if needed though, using numpy.linspace.

Doesn't package X already do this, but better?

This may very well be the case! If this duplicates another package, or if it is possible to use Numpy in a smarter way to get the same performance gains, please open an issue and I'll consider deprecating this package :)

One package that does include fast histogram functions (including in n-dimensions) and can compute other statistics is vaex, so take a look there if you need more advanced functionality!

Are the 2D histograms not transposed compared to what they should be?

There is technically no 'right' and 'wrong' orientation - here we adopt the convention which gives results consistent with Numpy, so:

numpy.histogram2d(x, y, range=[[xmin, xmax], [ymin, ymax]], bins=[nx, ny])

should give the same result as:

fast_histogram.histogram2d(x, y, range=[[xmin, xmax], [ymin, ymax]], bins=[nx, ny])

Why not contribute this to Numpy directly?

As mentioned above, the Numpy functions are much more versatile, so they could not be replaced by the ones here. One option would be to check in Numpy's functions for cases that are simple and dispatch to functions such as the ones here, or add dedicated functions for regular binning. I hope we can get this in Numpy in some form or another eventually, but for now, the aim is to have this available to packages that need to support a range of Numpy versions.

Why not use Cython?

I originally implemented this in Cython, but found that I could get a 50% performance improvement by going straight to a C extension.

What about using Numba?

I specifically want to keep this package as easy as possible to install, and while Numba is a great package, it is not trivial to install outside of Anaconda.

Could this be parallelized?

This may benefit from parallelization under certain circumstances. The easiest solution might be to use OpenMP, but this won't work on all platforms, so it would need to be made optional.

Couldn't you make it faster by using the GPU?

Almost certainly, though the aim here is to have an easily installable and portable package, and introducing GPUs is going to affect both of these.

Why make a package specifically for this? This is a tiny amount of functionality

Packages that need this could simply bundle their own C extension or Cython code to do this, but the main motivation for releasing this as a mini-package is to avoid making pure-Python packages into packages that require compilation just because of the need to compute fast histograms.

Can I contribute?

Yes please! This is not meant to be a finished package, and I welcome pull request to improve things.

Owner
Thomas Robitaille
Thomas Robitaille
Attractors is a package for simulation and visualization of strange attractors.

attractors Attractors is a package for simulation and visualization of strange attractors. Installation The simplest way to install the module is via

Vignesh M 45 Jul 31, 2022
patchwork for matplotlib

patchworklib patchwork for matplotlib test code Preparation of example plots import seaborn as sns import numpy as np import pandas as pd #Bri

Mori Hideto 185 Jan 06, 2023
Script to create an animated data visualisation for categorical timeseries data - GIF choropleth map with annotations.

choropleth_ldn Simple script to create a chloropleth map of London with categorical timeseries data. The script in main.py creates a gif of the most f

1 Oct 07, 2021
Python code for solving 3D structural problems using the finite element method

3DFEM Python 3D finite element code This python code allows for solving 3D structural problems using the finite element method. New features will be a

Rémi Capillon 6 Sep 29, 2022
Shaded 😎 quantile plots

shadyquant 😎 This python package allows you to quantile and plot lines where you have multiple samples, typically for visualizing uncertainty. Your d

Mehrad Ansari 13 Sep 29, 2022
mysql relation charts

sqlcharts 自动生成数据库关联关系图 复制settings.py.example 重命名为settings.py 将数据库配置信息填入settings.DATABASE,目前支持mysql和postgresql 执行 python build.py -b,-b是读取数据库表结构,如果只更新匹

6 Aug 22, 2022
Write python locally, execute SQL in your data warehouse

RasgoQL Write python locally, execute SQL in your data warehouse ≪ Read the Docs · Join Our Slack » RasgoQL is a Python package that enables you to ea

Rasgo 265 Nov 21, 2022
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
Smarthome Dashboard with Grafana & InfluxDB

Smarthome Dashboard with Grafana & InfluxDB This is a complete overhaul of my Raspberry Dashboard done with Flask. I switched from sqlite to InfluxDB

6 Oct 20, 2022
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023
Python package to visualize and cluster partial dependence.

partial_dependence A python library for plotting partial dependence patterns of machine learning classifiers. The technique is a black box approach to

NYU Visualization Lab 25 Nov 14, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
在原神中使用围栏绘图

yuanshen_draw 在原神中使用围栏绘图 文件说明 toLines.py 将一张图片转换为对应的线条集合,视频可以按帧转换。 draw.py 在原神家园里绘制一张线条图。 draw_video.py 在原神家园里绘制视频(自动按帧摆放,截图(win)并回收) cat_to_video.py

14 Oct 08, 2022
🗾 Streamlit Component for rendering kepler.gl maps

streamlit-keplergl 🗾 Streamlit Component for rendering kepler.gl maps in a streamlit app. 🎈 Live Demo 🎈 Installation pip install streamlit-keplergl

Christoph Rieke 39 Dec 14, 2022
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Plotly Dash Command Line Tools - Easily create and deploy Plotly Dash projects from templates

🛠️ dash-tools - Create and Deploy Plotly Dash Apps from Command Line | | | | | Create a templated multi-page Plotly Dash app with CLI in less than 7

Andrew Hossack 50 Dec 30, 2022
BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing the web.

BrowZen BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing t

Nick Bild 36 Sep 28, 2022
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns.

Make Complex Heatmaps Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. H

Zuguang Gu 973 Jan 09, 2023
A visualization tool made in Pygame for various pathfinding algorithms.

Pathfinding-Visualizer 🚀 A visualization tool made in Pygame for various pathfinding algorithms. Pathfinding is closely related to the shortest path

Aysha sana 7 Jul 09, 2022
This project is an Algorithm Visualizer where a user can visualize algorithms like Bubble Sort, Merge Sort, Quick Sort, Selection Sort, Linear Search and Binary Search.

Algo_Visualizer This project is an Algorithm Visualizer where a user can visualize common algorithms like "Bubble Sort", "Merge Sort", "Quick Sort", "

Rahul 4 Feb 07, 2022