Area-weighted venn-diagrams for Python/matplotlib

Overview

Venn diagram plotting routines for Python/Matplotlib

https://travis-ci.org/konstantint/matplotlib-venn.png?branch=master

Routines for plotting area-weighted two- and three-circle venn diagrams.

Installation

The simplest way to install the package is via easy_install or pip:

$ easy_install matplotlib-venn

Dependencies

  • numpy,
  • scipy,
  • matplotlib.

Usage

The package provides four main functions: venn2, venn2_circles, venn3 and venn3_circles.

The functions venn2 and venn2_circles accept as their only required argument a 3-element list (Ab, aB, AB) of subset sizes, e.g.:

venn2(subsets = (3, 2, 1))

and draw a two-circle venn diagram with respective region areas. In the particular example, the region, corresponding to subset A and not B will be three times larger in area than the region, corresponding to subset A and B. Alternatively, you can simply provide a list of two set or Counter (i.e. multi-set) objects instead (new in version 0.7), e.g.:

venn2([set(['A', 'B', 'C', 'D']), set(['D', 'E', 'F'])])

Similarly, the functions venn3 and venn3_circles take a 7-element list of subset sizes (Abc, aBc, ABc, abC, AbC, aBC, ABC), and draw a three-circle area-weighted venn diagram. Alternatively, you can provide a list of three set or Counter objects (rather than counting sizes for all 7 subsets).

The functions venn2_circles and venn3_circles draw just the circles, whereas the functions venn2 and venn3 draw the diagrams as a collection of colored patches, annotated with text labels. In addition (version 0.7+), functions venn2_unweighted and venn3_unweighted draw the Venn diagrams without area-weighting.

Note that for a three-circle venn diagram it is not in general possible to achieve exact correspondence between the required set sizes and region areas, however in most cases the picture will still provide a decent indication.

The functions venn2_circles and venn3_circles return the list of matplotlib.patch.Circle objects that may be tuned further to your liking. The functions venn2 and venn3 return an object of class VennDiagram, which gives access to constituent patches, text elements, and (since version 0.7) the information about the centers and radii of the circles.

Basic Example:

from matplotlib_venn import venn2
venn2(subsets = (3, 2, 1))

For the three-circle case:

from matplotlib_venn import venn3
venn3(subsets = (1, 1, 1, 2, 1, 2, 2), set_labels = ('Set1', 'Set2', 'Set3'))

A more elaborate example:

from matplotlib import pyplot as plt
import numpy as np
from matplotlib_venn import venn3, venn3_circles
plt.figure(figsize=(4,4))
v = venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'))
v.get_patch_by_id('100').set_alpha(1.0)
v.get_patch_by_id('100').set_color('white')
v.get_label_by_id('100').set_text('Unknown')
v.get_label_by_id('A').set_text('Set "A"')
c = venn3_circles(subsets=(1, 1, 1, 1, 1, 1, 1), linestyle='dashed')
c[0].set_lw(1.0)
c[0].set_ls('dotted')
plt.title("Sample Venn diagram")
plt.annotate('Unknown set', xy=v.get_label_by_id('100').get_position() - np.array([0, 0.05]), xytext=(-70,-70),
             ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='gray', alpha=0.1),
             arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5',color='gray'))
plt.show()

An example with multiple subplots (new in version 0.6):

from matplotlib_venn import venn2, venn2_circles
figure, axes = plt.subplots(2, 2)
venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B'), ax=axes[0][0])
venn2_circles((1, 2, 3), ax=axes[0][1])
venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'), ax=axes[1][0])
venn3_circles({'001': 10, '100': 20, '010': 21, '110': 13, '011': 14}, ax=axes[1][1])
plt.show()

Perhaps the most common use case is generating a Venn diagram given three sets of objects:

set1 = set(['A', 'B', 'C', 'D'])
set2 = set(['B', 'C', 'D', 'E'])
set3 = set(['C', 'D',' E', 'F', 'G'])

venn3([set1, set2, set3], ('Set1', 'Set2', 'Set3'))
plt.show()

Questions

  • If you ask your questions at StackOverflow and tag them matplotlib-venn, chances are high you'll get an answer from the maintainer of this package.

See also

Owner
Konstantin Tretyakov
Konstantin Tretyakov
Automate the case review on legal case documents and find the most critical cases using network analysis

Automation on Legal Court Cases Review This project is to automate the case review on legal case documents and find the most critical cases using netw

Yi Yin 7 Dec 28, 2022
HW_02 Data visualisation task

HW_02 Data visualisation and Matplotlib practice Instructions for HW_02 Idea for data analysis As I was brainstorming ideas and running through databa

9 Dec 13, 2022
Show Data: Show your dataset in web browser!

Show Data is to generate html tables for large scale image dataset, especially for the dataset in remote server. It provides some useful commond line tools and fully customizeble API reference to gen

Dechao Meng 83 Nov 26, 2022
Easily convert matplotlib plots from Python into interactive Leaflet web maps.

mplleaflet mplleaflet is a Python library that converts a matplotlib plot into a webpage containing a pannable, zoomable Leaflet map. It can also embe

Jacob Wasserman 502 Dec 28, 2022
A napari plugin for visualising and interacting with electron cryotomograms.

napari-tomoslice A napari plugin for visualising and interacting with electron cryotomograms. Installation You can install napari-tomoslice via pip: p

3 Jan 03, 2023
coordinate to draw the nimbus logo on the graffitiwall

This is a community effort to draw the nimbus logo on beaconcha.in's graffitiwall. get started clone repo with git clone https://github.com/tennisbowl

4 Apr 04, 2022
This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, reading data from PubSub.

Sample streaming Dataflow pipeline written in Python This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, readin

Israel Herraiz 9 Mar 18, 2022
Interactive chemical viewer for 2D structures of small molecules

👀 mols2grid mols2grid is an interactive chemical viewer for 2D structures of small molecules, based on RDKit. ➡️ Try the demo notebook on Google Cola

Cédric Bouysset 154 Dec 26, 2022
The open-source tool for building high-quality datasets and computer vision models

The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun

Voxel51 2.4k Jan 07, 2023
A research of IT labor market based especially on hh.ru. Salaries, rate of technologies and etc.

hh_ru_research Проект реализован в учебных целях анализа рынка труда, в особенности по hh.ru Input data В качестве входных данных используются сериали

3 Sep 07, 2022
A Jupyter - Leaflet.js bridge

ipyleaflet A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook. Usage Selecting a basemap for a leaflet map: Loading a geojso

Jupyter Widgets 1.3k Dec 27, 2022
Some method of processing point cloud

Point-Cloud Some method of processing point cloud inversion the completion pointcloud to incomplete point cloud Some model of encoding point cloud to

Tan 1 Nov 19, 2021
This tool is designed to help administrators get an overview of their Active Directory structure.

This tool is designed to help administrators get an overview of their Active Directory structure. In the group view you can see all elements of an AD (OU, USER, GROUPS, COMPUTERS etc.). In the user v

deexno 2 Oct 30, 2022
cqMore is a CadQuery plugin based on CadQuery 2.1.

cqMore (under construction) cqMore is a CadQuery plugin based on CadQuery 2.1. Installation Please use conda to install CadQuery and its dependencies

Justin Lin 36 Dec 21, 2022
A shimmer pre-load component for Plotly Dash

dash-loading-shimmer A shimmer pre-load component for Plotly Dash Installation Get it with pip: pip install dash-loading-extras Or maybe you prefer Pi

Lucas Durand 4 Oct 12, 2022
Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

EricAugustin 1 Feb 07, 2022
Create 3d loss surface visualizations, with optimizer path. Issues welcome!

MLVTK A loss surface visualization tool Simple feed-forward network trained on chess data, using elu activation and Adam optimizer Simple feed-forward

7 Dec 21, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 04, 2023
A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Drew Heasman 1 Jul 12, 2022
Create a table with row explanations, column headers, using matplotlib

Create a table with row explanations, column headers, using matplotlib. Intended usage was a small table containing a custom heatmap.

4 Aug 14, 2022