AB-test-analyzer - Python class to perform AB test analysis

Overview

AB-test-analyzer

Python class to perform AB test analysis

Overview

This repo contains a Python class to perform an A/B/C… test analysis with proportion-based metrics (including posthoc test). In practice, the class can be used along with any appropriate RDBMS retrieval tool (e.g. google.cloud.bigquery module for BigQuery) so that, together, they result in an end-to-end analysis process, i.e. from querying the experiment data stored originally in SQL to arriving at the complete analysis results.

The ABTest Class

The class is named ABTest. It is written on top of several well-known libraries (numpy, pandas, scipy, and statsmodels). The class' main functionality is to consume an experiment results data frame (experiment_df), metric information (nominator_metric, denominator_metric), and meta-information about the platform being experimented (platform) to perform two layers of statistical tests.

First, it will perform a Chi-square test on the aggregate data level. If this test is significant, the function will continue to perform a posthoc test that consists of testing each pair of experimental groups to report their adjusted p-values, as well as their absolute lift (difference) confidence intervals. Moreover, the class also has a method to calculate the statistical power of the experiment.

Class Init

To create an instance of ABTest class, we need to pass the following parameters--that also become the class instance attributes:

  1. experiment_df: pandas dataframe that contains the experiment data to be analyzed. The data contained must form a proportion based metric (nominator_metric/denominator_metric <= 1). More on this parameter can be found in a later section.
  2. nominator_metric: string representing the name of the nominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "transaction"
  3. denominator_metric: string representing the name of the denominator metric, another constituent of the proportion-based metric in experiment_df, e.g. "visit"
  4. platform: string representing the platform represented by the experiment data, e.g. "android", "ios"

Methods

get_reporting_df

This function has one parameter called metric_level (string, default value is None) that specifies the metric level of the experiment data whose reporting dataframe is to be derived. Two common values for this parameter are "user" and "event".

Below is the output example from calling self.get_reporting_df(metric_level='user')

|    | experiment_group   | metric_level   |   targeted |   redeemed |   conversion |
|---:|:-------------------|:---------------|-----------:|-----------:|-------------:|
|  0 | control            | user           |       8333 |       1062 |     0.127445 |
|  1 | variant1           | user           |       8002 |        825 |     0.103099 |
|  2 | variant2           | user           |       8251 |       1289 |     0.156223 |
|  3 | variant3           | user           |       8275 |       1228 |     0.148399 |

posthoc_test

This function is the engine under the hood of the analyze method. It has three parameters:

  1. reporting_df: pandas dataframe, output of get_reporting_df method
  2. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived
  3. alpha: float, the used alpha in the analysis

analyze

The main function to analyze the AB test. It has two parameters:

  1. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived (default value is None). Two common values for this parameter are "user" and "event"
  2. alpha: float, the used alpha in the analysis (default value is 0.05)

The output of this method is a pandas dataframe with the following columns:

  1. metric_level: optional, only if metric_level parameter is not None
  2. pair: the segment pair being individually tested using z-proportion test
  3. raw_p_value: the raw p-value from the individual z-proportion test
  4. adj_p_value: the adjusted p-value (using Benjamini-Hochberg method) from z-proportion tests. Note that significant result is marked with *
  5. mean_ci: the mean (center value) of the metrics delta confidence interval at 1-alpha
  6. lower_ci: the lower bound of the metrics delta confidence interval at 1-alpha
  7. upper_ci: the upper bound of the metrics delta confidence interval at 1-alpha

Sample output:

|    | metric_level   | pair                 |   raw_p_value | adj_p_value             |     mean_ci |    lower_ci |    upper_ci |
|---:|:---------------|:---------------------|--------------:|:------------------------|------------:|------------:|------------:|
|  0 | user           | control vs variant1  |   1.13731e-06 | 1.592240591875927e-06*  |  -0.0243459 |  -0.0341516 |  -0.0145402 |
|  1 | user           | control vs variant2  |   1.08192e-07 | 1.8933619380632198e-07* |   0.0287784 |   0.0181608 |   0.0393959 |
|  2 | user           | control vs variant3  |   9.00223e-05 | 0.00010502606726165857* |   0.0209537 |   0.0104664 |   0.031441  |
|  3 | user           | variant1 vs variant2 |   7.82096e-24 | 2.737334684573585e-23*  |   0.0531243 |   0.0427802 |   0.0634683 |
|  4 | user           | variant1 vs variant3 |   3.23786e-18 | 7.554997289146693e-18*  |   0.0452996 |   0.0350976 |   0.0555015 |
|  5 | user           | variant2 vs variant1 |   7.82096e-24 | 2.737334684573585e-23*  |  -0.0531243 |  -0.0634683 |  -0.0427802 |
|  6 | user           | variant2 vs variant3 |   0.161595    | 0.16159493454321772     | nan         | nan         | nan         |

calculate_power

This function calculates the experiment’s statistical power for the supplied experiment_df. It has three parameters:

  1. practical_lift: float, the metrics lift that perceived meaningful
  2. alpha: float, the used alpha in the analysis (default value is 0.05)
  3. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived (default value is None). Two common values for this parameter are "user" and "event"

Sample output:

The experiment's statistical power is 0.2680540196528648

Data Format

This section is dedicated to explaining the details of the format of experiment_df , i.e. the main data supply for the ABTest class.
experiment_df must at least have three columns with the following names:

  1. experiment_group: self-explanatory
  2. denominator_metric: the name of the denominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "visit"
  3. nominator_metric: the name of the nominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "transaction"
  4. (optional) metric_level: the metric level of the data (usually either "user" or "event")

In practice, this dataframe is derived by querying SQL tables using an appropriate retrieval tool.

Sample experiment_df

|    | experiment_group   | metric_level   |   targeted |   redeemed |
|---:|:-------------------|:---------------|-----------:|-----------:|
|  0 | control            | user           |       8333 |       1062 |
|  1 | variant1           | user           |       8002 |        825 |
|  2 | variant2           | user           |       8251 |       1289 |
|  3 | variant3           | user           |       8275 |       1228 |

Usage Guideline

The general steps:

  1. Prepare experiment_df (via anything you’d prefer)
  2. Create an ABTest class instance
  3. To get reporting dataframe, call get_reporting_df method
  4. To analyze end-to-end, call analyze method
  5. To calculate experiment’s statistical power, call calculate_power method

See the sample usage notebook for more details.

HW 2: Visualizing interesting datasets

HW 2: Visualizing interesting datasets Check out the project instructions here! Mean Earnings per Hour for Males and Females My first graph uses data

7 Oct 27, 2021
Fast visualization of radar_scenes based on oleschum/radar_scenes

RadarScenes Tools About This python package provides fast visualization for the RadarScenes dataset. The Open GL based visualizer is smoother than ole

Henrik Söderlund 2 Dec 09, 2021
基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。

COVID-19-Epidemic-Map 基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。 觉得项目还不错的话欢迎给一个star! 项目的源码可以正常运行,各个库的版本、数据库的建表语句、运行过程中遇到的坑以及解决方式在笔记.md中都

31 Dec 15, 2022
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

3.4k Dec 30, 2022
Show Data: Show your dataset in web browser!

Show Data is to generate html tables for large scale image dataset, especially for the dataset in remote server. It provides some useful commond line tools and fully customizeble API reference to gen

Dechao Meng 83 Nov 26, 2022
Python histogram library - histograms as updateable, fully semantic objects with visualization tools. [P]ython [HYST]ograms.

physt P(i/y)thon h(i/y)stograms. Inspired (and based on) numpy.histogram, but designed for humans(TM) on steroids(TM). The goal is to unify different

Jan Pipek 120 Dec 08, 2022
Comparing USD and GBP Exchange Rates

Currency Data Visualization Comparing USD and GBP Exchange Rates This is a bar graph comparing GBP and USD exchange rates. I chose blue for the UK bec

5 Oct 28, 2021
哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看、waifu2x等功能。

picacomic-windows 哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看等功能。 功能介绍 登陆分流,还原安卓端的三个分流入口 分类,搜索,排行,收藏夹使用同一的逻辑,滚轮下滑自动加载下一页,双击打开 漫画详情,章节列表和评论列表 下载功能,目

1.8k Dec 31, 2022
Voilà, install macOS on ANY Computer! This is really and magic easiest way!

OSX-PROXMOX - Run macOS on ANY Computer - AMD & Intel Install Proxmox VE v7.02 - Next, Next & Finish (NNF). Open Proxmox Web Console - Datacenter N

Gabriel Luchina 654 Jan 09, 2023
A toolkit to generate MR sequence diagrams

mrsd: a toolkit to generate MR sequence diagrams mrsd is a Python toolkit to generate MR sequence diagrams, as shown below for the basic FLASH sequenc

Julien Lamy 3 Dec 25, 2021
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
The interactive graphing library for Python (includes Plotly Express) :sparkles:

plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En

Plotly 12.7k Jan 05, 2023
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 697 Jan 06, 2023
A little word cloud generator in Python

Linux macOS Windows PyPI word_cloud A little word cloud generator in Python. Read more about it on the blog post or the website. The code is tested ag

Andreas Mueller 9.2k Dec 30, 2022
Simple Python interface for Graphviz

Simple Python interface for Graphviz

Sebastian Bank 1.3k Dec 26, 2022
Implement the Perspective open source code in preparation for data visualization

Task Overview | Installation Instructions | Link to Module 2 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 23, 2022
This is simply repo for line drawing rendering using freestyle in Blender.

blender_freestyle_line_drawing This is simply repo for line drawing rendering using freestyle in Blender. how to use blender2935 --background --python

MaxLin 3 Jul 02, 2022
HW_02 Data visualisation task

HW_02 Data visualisation and Matplotlib practice Instructions for HW_02 Idea for data analysis As I was brainstorming ideas and running through databa

9 Dec 13, 2022
Simple, realtime visualization of neural network training performance.

pastalog Simple, realtime visualization server for training neural networks. Use with Lasagne, Keras, Tensorflow, Torch, Theano, and basically everyth

Rewon Child 416 Dec 29, 2022
Attractors is a package for simulation and visualization of strange attractors.

attractors Attractors is a package for simulation and visualization of strange attractors. Installation The simplest way to install the module is via

Vignesh M 45 Jul 31, 2022