AB-test-analyzer - Python class to perform AB test analysis

Overview

AB-test-analyzer

Python class to perform AB test analysis

Overview

This repo contains a Python class to perform an A/B/C… test analysis with proportion-based metrics (including posthoc test). In practice, the class can be used along with any appropriate RDBMS retrieval tool (e.g. google.cloud.bigquery module for BigQuery) so that, together, they result in an end-to-end analysis process, i.e. from querying the experiment data stored originally in SQL to arriving at the complete analysis results.

The ABTest Class

The class is named ABTest. It is written on top of several well-known libraries (numpy, pandas, scipy, and statsmodels). The class' main functionality is to consume an experiment results data frame (experiment_df), metric information (nominator_metric, denominator_metric), and meta-information about the platform being experimented (platform) to perform two layers of statistical tests.

First, it will perform a Chi-square test on the aggregate data level. If this test is significant, the function will continue to perform a posthoc test that consists of testing each pair of experimental groups to report their adjusted p-values, as well as their absolute lift (difference) confidence intervals. Moreover, the class also has a method to calculate the statistical power of the experiment.

Class Init

To create an instance of ABTest class, we need to pass the following parameters--that also become the class instance attributes:

  1. experiment_df: pandas dataframe that contains the experiment data to be analyzed. The data contained must form a proportion based metric (nominator_metric/denominator_metric <= 1). More on this parameter can be found in a later section.
  2. nominator_metric: string representing the name of the nominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "transaction"
  3. denominator_metric: string representing the name of the denominator metric, another constituent of the proportion-based metric in experiment_df, e.g. "visit"
  4. platform: string representing the platform represented by the experiment data, e.g. "android", "ios"

Methods

get_reporting_df

This function has one parameter called metric_level (string, default value is None) that specifies the metric level of the experiment data whose reporting dataframe is to be derived. Two common values for this parameter are "user" and "event".

Below is the output example from calling self.get_reporting_df(metric_level='user')

|    | experiment_group   | metric_level   |   targeted |   redeemed |   conversion |
|---:|:-------------------|:---------------|-----------:|-----------:|-------------:|
|  0 | control            | user           |       8333 |       1062 |     0.127445 |
|  1 | variant1           | user           |       8002 |        825 |     0.103099 |
|  2 | variant2           | user           |       8251 |       1289 |     0.156223 |
|  3 | variant3           | user           |       8275 |       1228 |     0.148399 |

posthoc_test

This function is the engine under the hood of the analyze method. It has three parameters:

  1. reporting_df: pandas dataframe, output of get_reporting_df method
  2. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived
  3. alpha: float, the used alpha in the analysis

analyze

The main function to analyze the AB test. It has two parameters:

  1. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived (default value is None). Two common values for this parameter are "user" and "event"
  2. alpha: float, the used alpha in the analysis (default value is 0.05)

The output of this method is a pandas dataframe with the following columns:

  1. metric_level: optional, only if metric_level parameter is not None
  2. pair: the segment pair being individually tested using z-proportion test
  3. raw_p_value: the raw p-value from the individual z-proportion test
  4. adj_p_value: the adjusted p-value (using Benjamini-Hochberg method) from z-proportion tests. Note that significant result is marked with *
  5. mean_ci: the mean (center value) of the metrics delta confidence interval at 1-alpha
  6. lower_ci: the lower bound of the metrics delta confidence interval at 1-alpha
  7. upper_ci: the upper bound of the metrics delta confidence interval at 1-alpha

Sample output:

|    | metric_level   | pair                 |   raw_p_value | adj_p_value             |     mean_ci |    lower_ci |    upper_ci |
|---:|:---------------|:---------------------|--------------:|:------------------------|------------:|------------:|------------:|
|  0 | user           | control vs variant1  |   1.13731e-06 | 1.592240591875927e-06*  |  -0.0243459 |  -0.0341516 |  -0.0145402 |
|  1 | user           | control vs variant2  |   1.08192e-07 | 1.8933619380632198e-07* |   0.0287784 |   0.0181608 |   0.0393959 |
|  2 | user           | control vs variant3  |   9.00223e-05 | 0.00010502606726165857* |   0.0209537 |   0.0104664 |   0.031441  |
|  3 | user           | variant1 vs variant2 |   7.82096e-24 | 2.737334684573585e-23*  |   0.0531243 |   0.0427802 |   0.0634683 |
|  4 | user           | variant1 vs variant3 |   3.23786e-18 | 7.554997289146693e-18*  |   0.0452996 |   0.0350976 |   0.0555015 |
|  5 | user           | variant2 vs variant1 |   7.82096e-24 | 2.737334684573585e-23*  |  -0.0531243 |  -0.0634683 |  -0.0427802 |
|  6 | user           | variant2 vs variant3 |   0.161595    | 0.16159493454321772     | nan         | nan         | nan         |

calculate_power

This function calculates the experiment’s statistical power for the supplied experiment_df. It has three parameters:

  1. practical_lift: float, the metrics lift that perceived meaningful
  2. alpha: float, the used alpha in the analysis (default value is 0.05)
  3. metric_level: string, the metric level of the experiment data whose reporting dataframe is to be derived (default value is None). Two common values for this parameter are "user" and "event"

Sample output:

The experiment's statistical power is 0.2680540196528648

Data Format

This section is dedicated to explaining the details of the format of experiment_df , i.e. the main data supply for the ABTest class.
experiment_df must at least have three columns with the following names:

  1. experiment_group: self-explanatory
  2. denominator_metric: the name of the denominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "visit"
  3. nominator_metric: the name of the nominator metric, one constituent of the proportion-based metric in experiment_df, e.g. "transaction"
  4. (optional) metric_level: the metric level of the data (usually either "user" or "event")

In practice, this dataframe is derived by querying SQL tables using an appropriate retrieval tool.

Sample experiment_df

|    | experiment_group   | metric_level   |   targeted |   redeemed |
|---:|:-------------------|:---------------|-----------:|-----------:|
|  0 | control            | user           |       8333 |       1062 |
|  1 | variant1           | user           |       8002 |        825 |
|  2 | variant2           | user           |       8251 |       1289 |
|  3 | variant3           | user           |       8275 |       1228 |

Usage Guideline

The general steps:

  1. Prepare experiment_df (via anything you’d prefer)
  2. Create an ABTest class instance
  3. To get reporting dataframe, call get_reporting_df method
  4. To analyze end-to-end, call analyze method
  5. To calculate experiment’s statistical power, call calculate_power method

See the sample usage notebook for more details.

Collection of data visualizing projects through Tableau, Data Wrapper, and Power BI

Data-Visualization-Projects Collection of data visualizing projects through Tableau, Data Wrapper, and Power BI Indigenous-Brands-Social-Movements Pyt

Jinwoo(Roy) Yoon 1 Feb 05, 2022
A Jupyter - Three.js bridge

pythreejs A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure. Getting Started Installation Using pip: pip install pythreejs And the

Jupyter Widgets 844 Dec 27, 2022
script to generate HeN ipfs app exports of GLSL shaders

HeNerator A simple script to generate HeN ipfs app exports from any frag shader created with: GlslViewer GlslEditor The Book of Shaders glslCanvas VS

Patricio Gonzalez Vivo 22 Dec 21, 2022
UNMAINTAINED! Renders beautiful SVG maps in Python.

Kartograph is not maintained anymore As you probably already guessed from the commit history in this repo, Kartograph.py is not maintained, which mean

1k Dec 09, 2022
University of Missouri - Kansas City: CS451R: Capstone

CS451RC University of Missouri - Kansas City: CS451R: Capstone Installation cd git clone https://github.com/ala2q6/CS451RC.git cd CS451RC pip3 instal

Alex Arbuckle 1 Nov 17, 2021
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Python scripts to manage Chia plots and drive space, providing full reports. Also monitors the number of chia coins you have.

Chia Plot, Drive Manager & Coin Monitor (V0.5 - April 20th, 2021) Multi Server Chia Plot and Drive Management Solution Be sure to ⭐ my repo so you can

338 Nov 25, 2022
An animation engine for explanatory math videos

Powered By: An animation engine for explanatory math videos Hi there, I'm Zheer 👋 I'm a Software Engineer and student!! 🌱 I’m currently learning eve

Zaheer ud Din Faiz 2 Nov 04, 2021
CPG represent!

CoolPandasGroup CPG represent! Arianna Brandon Enne Luan Tracie Project requirements: use Pandas to clean and format datasets use Jupyter Notebook to

Enne 3 Feb 07, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Dec 26, 2022
https://there.oughta.be/a/macro-keyboard

inkkeys Details and instructions can be found on https://there.oughta.be/a/macro-keyboard In contrast to most of my other projects, I decided to put t

Sebastian Staacks 209 Dec 21, 2022
Streaming pivot visualization via WebAssembly

Perspective is an interactive visualization component for large, real-time datasets. Originally developed for J.P. Morgan's trading business, Perspect

The Fintech Open Source Foundation (www.finos.org) 5.1k Dec 27, 2022
🌀❄️🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in python3.

Weather-Plotting 🌀 ❄️ 🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in pytho

Giannis Dravilas 21 Dec 10, 2022
A workshop on data visualization in Python with notebooks and exercises for following along.

Beyond the Basics: Data Visualization in Python The human brain excels at finding patterns in visual representations, which is why data visualizations

Stefanie Molin 162 Dec 05, 2022
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver

Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constrai

Sabbella Prasanna 1 Jan 11, 2022
Plot-configurations for scientific publications, purely based on matplotlib

TUEplots Plot-configurations for scientific publications, purely based on matplotlib. Usage Please have a look at the examples in the example/ directo

Nicholas Krämer 487 Jan 08, 2023
Some useful extensions for Matplotlib.

mplx Some useful extensions for Matplotlib. Contour plots for functions with discontinuities plt.contour mplx.contour(max_jump=1.0) Matplotlib has pro

Nico Schlömer 519 Dec 30, 2022
Arras.io Highest Scores Over Time Bar Chart Race

Arras.io Highest Scores Over Time Bar Chart Race This repo contains a python script (make_racing_bar_chart.py) that can generate a csv file which can

Road 2 Jan 16, 2022
erdantic is a simple tool for drawing entity relationship diagrams (ERDs) for Python data model classes

erdantic is a simple tool for drawing entity relationship diagrams (ERDs) for Python data model classes. Diagrams are rendered using the venerable Graphviz library.

DrivenData 129 Jan 04, 2023