Python histogram library - histograms as updateable, fully semantic objects with visualization tools. [P]ython [HYST]ograms.

Overview

physt Physt logo

P(i/y)thon h(i/y)stograms. Inspired (and based on) numpy.histogram, but designed for humans(TM) on steroids(TM).

The goal is to unify different concepts of histograms as occurring in numpy, pandas, matplotlib, ROOT, etc. and to create one representation that is easily manipulated with from the data point of view and at the same time provides nice integration into IPython notebook and various plotting options. In short, whatever you want to do with histograms, physt aims to be on your side.

Note: bokeh plotting backend has been discontinued (due to external library being redesigned.)

Travis ReadTheDocs Join the chat at https://gitter.im/physt/Lobby PyPI version Anaconda-Server Badge Anaconda-Server Badge

Versioning

  • Versions 0.3.x support Python 2.7 (no new releases in 2019)
  • Versions 0.4.x support Python 3.5+ while continuing the 0.3 API
  • Versions 0.4.9+ support only Python 3.6+ while continuing the 0.3 API
  • Versions 0.5.x slightly change the interpretation of *args in h1, h2, ...

Simple example

from physt import h1

# Create the sample
heights = [160, 155, 156, 198, 177, 168, 191, 183, 184, 179, 178, 172, 173, 175,
           172, 177, 176, 175, 174, 173, 174, 175, 177, 169, 168, 164, 175, 188,
           178, 174, 173, 181, 185, 166, 162, 163, 171, 165, 180, 189, 166, 163,
           172, 173, 174, 183, 184, 161, 162, 168, 169, 174, 176, 170, 169, 165]

hist = h1(heights, 10)           # <--- get the histogram data
hist << 190                      # <--- add a forgotten value
hist.plot()                      # <--- and plot it

Heights plot

2D example

from physt import h2
import seaborn as sns

iris = sns.load_dataset('iris')
iris_hist = h2(iris["sepal_length"], iris["sepal_width"], "human", bin_count=[12, 7], name="Iris")
iris_hist.plot(show_zero=False, cmap="gray_r", show_values=True);

Iris 2D plot

3D directional example

import numpy as np
from physt import special_histograms

# Generate some sample data
data = np.empty((1000, 3))
data[:,0] = np.random.normal(0, 1, 1000)
data[:,1] = np.random.normal(0, 1.3, 1000)
data[:,2] = np.random.normal(1, .6, 1000)

# Get histogram data (in spherical coordinates)
h = special_histograms.spherical(data)                 

# And plot its projection on a globe
h.projection("theta", "phi").plot.globe_map(density=True, figsize=(7, 7), cmap="rainbow")   

Directional 3D plot

See more in docstring's and notebooks:

Installation

Using pip:

pip install physt

Features

Implemented

  • 1D histograms
  • 2D histograms
  • ND histograms
  • Some special histograms
    • 2D polar coordinates (with plotting)
    • 3D spherical / cylindrical coordinates (beta)
  • Adaptive rebinning for on-line filling of unknown data (beta)
  • Non-consecutive bins
  • Memory-effective histogramming of dask arrays (beta)
  • Understands any numpy-array-like object
  • Keep underflow / overflow / missed bins
  • Basic numeric operations (* / + -)
  • Items / slice selection (including mask arrays)
  • Add new values (fill, fill_n)
  • Cumulative values, densities
  • Simple statistics for original data (mean, std, sem)
  • Plotting with several backends
    • matplotlib (static plots with many options)
    • vega (interactive plots, beta, help wanted!)
    • folium (experimental for geo-data)
    • plotly (very basic, help wanted!)
    • ascii (experimental)
  • Algorithms for optimized binning
    • human-friendly
    • mathematical
  • IO, conversions
    • I/O JSON
    • I/O xarray.DataSet (experimental)
    • O ROOT file (experimental)
    • O pandas.DataFrame (basic)

Planned

  • Rebinning
    • using reference to original data?
    • merging bins
  • Statistics (based on original data)?
  • Stacked histograms (with names)
  • Potentially holoviews plotting backend (instead of the discontinued bokeh one)

Not planned

  • Kernel density estimates - use your favourite statistics package (like seaborn)
  • Rebinning using interpolation - it should be trivial to use rebin (https://github.com/jhykes/rebin) with physt

Rationale (for both): physt is dumb, but precise.

Dependencies

  • Python 3.5+
  • numpy
  • (optional) matplotlib - simple output
  • (optional) xarray - I/O
  • (optional) protobuf - I/O
  • (optional) uproot - I/O
  • (optional) astropy - additional binning algorithms
  • (optional) folium - map plotting
  • (optional) vega3 - for vega in-line in IPython notebook (note that to generate vega JSON, this is not necessary)
  • (optional) asciiplotlib - for ASCII bar plots
  • (optional) xtermcolot - for ASCII color maps
  • (testing) py.test, pandas
  • (docs) sphinx, sphinx_rtd_theme, ipython

Publicity

Talk at PyData Berlin 2018:

Contribution

I am looking for anyone interested in using / developing physt. You can contribute by reporting errors, implementing missing features and suggest new one.

Thanks to:

Patches:

Alternatives and inspirations

Comments
  • python 2.7 plotting is not working

    python 2.7 plotting is not working

    When runnin plot() function I get the error below even though matplotlib is installed. Also the algorithm is pretty slow when running on something bigger than toy example.

    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/usr/local/lib/python2.7/dist-packages/physt/plotting/__init__.py", line 137, in __call__
        return plot(self.histogram, kind=kind, **kwargs)
      File "/usr/local/lib/python2.7/dist-packages/physt/plotting/__init__.py", line 91, in plot
        backend_name, backend = _get_backend(backend)
      File "/usr/local/lib/python2.7/dist-packages/physt/plotting/__init__.py", line 70, in _get_backend
        raise RuntimeError("No plotting backend available. Please, install matplotlib (preferred) or bokeh (limited).")
    RuntimeError: No plotting backend available. Please, install matplotlib (preferred) or bokeh (limited).
    
    bug 
    opened by romange 13
  • Smooth polar histograms?

    Smooth polar histograms?

    Thanks for writing this awesome library!

    I have a question regarding smoothing of polar 2D histograms. I am constructing a histogram like described on this page https://physt.readthedocs.io/en/latest/special_histograms.html#Polar-histogram and now I want to smooth it with a Gaussian kernel (like scipy.ndimage.gaussian_filter). What is the most elegant / correct method to do that?

    question 
    opened by horsto 7
  • Rebinning histograms related project

    Rebinning histograms related project

    Hi I found a project on rebinning histogram at https://github.com/jhykes/rebin and I opened an issue (jhykes/rebin#5) on that project page asking about integrating his code to this project. I hope you will appreciate it.

    enhancement idea? 
    opened by DancingQuanta 7
  • Option to center labels on bins

    Option to center labels on bins

    If you have a large dataset with a small number of values (such as consisting only of integers 1-10) then it would be nice to have the bin x-axis labels at the center under the respective bin instead of at the bin edges.

    I recognise this case is more of a 'histogram as bar plot' kind of thing, but it is a use-case I have often.

    opened by nzjrs 5
  • Usage of spherical histogram

    Usage of spherical histogram

    Hi, I have tried the example of spherical histogram. After a small modification of the code (normalized the data as unit vectors),

    n = 100 data = np.empty((n, 3)) data[:,0] = np.random.normal(0, 1, n) data[:,1] = np.random.normal(0, 1, n) data[:,2] = np.random.normal(0, 1, n) for i in range(n): scale = np.sqrt(data[i,0]**2 + data[i,1]**2 + data[i,2]**2) data[i,0] = data[i,0]/scale data[i,1] = data[i,1]/scale data[i,2] = data[i,2]/scale

    h = special.spherical_histogram(data, theta_bins=20, phi_bins=20) ax.scatter(data[:,0], data[:,1], data[:,2])

    globe = h.projection("theta", "phi") globe.plot.globe_map(density=True, figsize=(7, 7), cmap="rainbow")

    plt.show()

    I got an error: “RuntimeError: Bins not in rising order.” What did I do wrong? Thank you for your support.

    question 
    opened by zhengpuchen 3
  • approximate histograms

    approximate histograms

    I'm following the paper (http://jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf) implemented by https://github.com/carsonfarmer/streamhist, and the notion of approximate histograms seems elegant and efficient.

    After seeing the internals of streamhist (trying to fix bugs) and reading the paper, I can imagine ways to make a better implementation: e.g. much more efficient discovery of bins to be joined, and avoiding temporary lists when possible. Also the code seems overly complex, partially due to features like "bin freezing" which try to workaround poor bin joining performance.

    Anyway since streamhist is defunct, I'm thinking about trying an implementation. I wonder if this kind of histogram would fit into physt (and if sortedcollections would be reasonable as a dependency).

    opened by belm0 3
  • please make this library discoverable

    please make this library discoverable

    name: physt (?) github tag line: P(i/y)thon h(i/y)stograms (???)

    google search for "python streaming histogram"

    • top result is https://github.com/carsonfarmer/streamhist (unused / unmaintained)
    • physt not in initial 10 pages of results...

    For over a year I've wanted to find a Python library which supports efficient histogram updates without a bunch of ugly dependencies. I've searched many times. Today I happened to get lucky by seeing physt mentioned at the bottom of a SO question (https://stackoverflow.com/questions/40627274/).

    To improve discoverability by search, please consider updating the github tag line to concisely and accurately describe the library (... rather than be cute).

    opened by belm0 2
  • Warning in current numpy

    Warning in current numpy

    If you try to merge bins:

    from physt import h2
    from scipy.stats import multivariate_normal
    hist = h2(*multivariate_normal.rvs((0,0), size=100_000).T, bins=100)
    hist.merge_bins(2)
    

    You get a warning from numpy:

    /home/schreihf/.local/lib/python3.7/site-packages/physt/histogram_base.py:572: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
      new_frequencies[new_index] += old_frequencies[old_index]
    /home/schreihf/.local/lib/python3.7/site-packages/physt/histogram_base.py:573: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
      new_errors2[new_index] += old_errors2[old_index]
    
    opened by henryiii 2
  • Add 2D & ND histograms

    Add 2D & ND histograms

    • [x] Analogous data model to Histogram1D
    • [x] refactor HistogramBase class -> common behaviour of 1D and 2D
    • [x] revisit binning schemas
    • [x] histogram2D facade function to be compatible with numpy one
    • [x] plotting
    • [x] arithmetic operations
    • [x] documentation
    • [ ] stats
    enhancement 
    opened by janpipek 2
  • ImportError with newer plotly

    ImportError with newer plotly

    [SOMEDIR}\physt\physt\plotting\plotly.py in <module>
         12 
         13 import plotly.offline as pyo
    ---> 14 import plotly.plotly as pyp
         15 import plotly.graph_objs as go
         16 
    
    ~\Miniconda3\lib\site-packages\plotly\plotly\__init__.py in <module>
          2 from _plotly_future_ import _chart_studio_error
          3 
    ----> 4 _chart_studio_error("plotly")
    
    ~\Miniconda3\lib\site-packages\_plotly_future_\__init__.py in _chart_studio_error(submodule)
         41 
         42 def _chart_studio_error(submodule):
    ---> 43     raise ImportError(
         44         """
         45 The plotly.{submodule} module is deprecated,
    
    ImportError: 
    The plotly.plotly module is deprecated,
    please install the chart-studio package and use the
    chart_studio.plotly module instead. 
    
    bug visualization 
    opened by janpipek 1
  • Wrong bars center in polar_map

    Wrong bars center in polar_map

    I have found that the bars in polar_map are centered on the left edge of the phi bins instead of their center. Because of this, the representation of the histogram does not coincide with the data, as in the figure below: polarmap_wrong

    I think this can be easily solved by replacing

    bars = ax.bar(phipos[i], dr[i], width=dphi[i], bottom=rpos[i], color=bin_color,

    with

    bars = ax.bar(phipos[i] + 0.5*dphi[i], dr[i], width=dphi[i], bottom=rpos[i], color=bin_color,

    in the definition of polar_map.

    By the way, thank you for this amazing package!

    bug visualization 
    opened by ruhugu 1
  • Be more explicit about bins too narrow for float representation

    Be more explicit about bins too narrow for float representation

    If the computed range for the binning divided by the number of bins is lower than the minimum float difference at the scale, we receive an error [ValueError: Bins not in rising order.] which is not very informative.

    To reproduce:

    data = [1, np.nextafter(1, 2)]
    physt.h1(data)
    

    It also happens when the range is 0, like in:

    data = [1, 1]
    physt.h1(data)
    
    enhancement 
    opened by janpipek 1
Releases(v0.5.2)
Owner
Jan Pipek
PyData Prague
Jan Pipek
Simple, realtime visualization of neural network training performance.

pastalog Simple, realtime visualization server for training neural networks. Use with Lasagne, Keras, Tensorflow, Torch, Theano, and basically everyth

Rewon Child 416 Dec 29, 2022
A Python library for plotting hockey rinks with Matplotlib.

Hockey Rink A Python library for plotting hockey rinks with Matplotlib. Installation pip install hockey_rink Current Rinks The following shows the cus

24 Jan 02, 2023
Make sankey, alluvial and sankey bump plots in ggplot

The goal of ggsankey is to make beautiful sankey, alluvial and sankey bump plots in ggplot2

David Sjoberg 156 Jan 03, 2023
Visualize your pandas data with one-line code

PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand

陈华杰 2 Apr 13, 2022
web application for flight log analysis & review

Flight Review This is a web application for flight log analysis. It allows users to upload ULog flight logs, and analyze them through the browser. It

PX4 Drone Autopilot 145 Dec 20, 2022
Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

Aditya Thakekar 1 Jan 11, 2022
Analysis and plotting for motor/prop/ESC characterization, thrust vs RPM and torque vs thrust

esc_test This is a Python package used to plot and analyze data collected for the purpose of characterizing a particular propeller, motor, and ESC con

Alex Spitzer 1 Dec 28, 2021
Piglet-shaders - PoC of custom shaders for Piglet

Piglet custom shader PoC This is a PoC for compiling Piglet fragment shaders usi

6 Mar 10, 2022
Design your own matplotlib stylefile interactively

Tired of playing with font sizes and other matplotlib parameters every time you start a new project or write a new plotting function? Want all you plots have the same style? Use matplotlib configurat

yobi byte 207 Dec 08, 2022
Generate a 3D Skyline in STL format and a OpenSCAD file from Gitlab contributions

Your Gitlab's contributions in a 3D Skyline gitlab-skyline is a Python command to generate a skyline figure from Gitlab contributions as Github did at

Félix Gómez 70 Dec 22, 2022
Visualization Data Drug in thailand during 2014 to 2020

Visualization Data Drug in thailand during 2014 to 2020 Data sorce from ข้อมูลเปิดภาครัฐ สำนักงาน ป.ป.ส Inttroducing program Using tkinter module for

Narongkorn 1 Jan 05, 2022
Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects

carcassonne_tools Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects NOTE NOTE NOTE The

1 Nov 08, 2021
patchwork for matplotlib

patchworklib patchwork for matplotlib test code Preparation of example plots import seaborn as sns import numpy as np import pandas as pd #Bri

Mori Hideto 185 Jan 06, 2023
Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

688 Jan 03, 2023
Use Perspective to create the chart for the trader’s dashboard

Task Overview | Installation Instructions | Link to Module 3 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 22, 2022
view cool stats related to your discord account.

DiscoStats cool statistics generated using your discord data. How? DiscoStats is not a service that breaks the Discord Terms of Service or Community G

ibrahim hisham 5 Jun 02, 2022
JSNAPY example: Validate NAT policies

JSNAPY example: Validate NAT policies Overview This example will show how to use JSNAPy to make sure the expected NAT policy matches are taking place.

Calvin Remsburg 1 Jan 07, 2022
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation.

nptsne nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation and HSNE modelling. For more detail s

Biomedical Visual Analytics Unit LUMC - TU Delft 29 Jul 05, 2022
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022