Make sankey, alluvial and sankey bump plots in ggplot

Overview

ggsankey

The goal of ggsankey is to make beautiful sankey, alluvial and sankey bump plots in ggplot2

Installation

You can install the development version of ggsankey from github with:

# install.packages("devtools")
devtools::install_github("davidsjoberg/ggsankey")

How does it work

Google defines a sankey as:

A sankey diagram is a visualization used to depict a flow from one set of values to another. The things being connected are called nodes and the connections are called links. Sankeys are best used when you want to show a many-to-many mapping between two domains or multiple paths through a set of stages.

To plot a sankey diagram with ggsankey each observation has a stage (called a discrete x-value in ggplot) and be part of a node. Furthermore, each observation needs to have instructions of which node it will belong to in the next stage. See the image below for some clarification.

Hence, to use geom_sankey the aestethics x, next_x, node and next_node are required. The last stage should point to NA. The aestethics fill and color will affect both nodes and flows.

To controll geometries (not changed by data) like fill, color, size, alpha etc for nodes and flows you can either choose to set a global value that affect both, or you can specify which one you want to alter. For example node.color = 'black' will only draw a black line around the nodes, but not the flows (links).

Example

geom_sankey

A basic sankey plot that shows how dimensions are linked.

library(ggsankey)
library(dplyr)
library(ggplot2)

df <- mtcars %>%
  make_long(cyl, vs, am, gear, carb)

ggplot(df, aes(x = x, 
               next_x = next_x, 
               node = node, 
               next_node = next_node,
               fill = factor(node))) +
  geom_sankey()

And by adding a little pimp.

  • Labels with geom_sankey_label which places labels in the center of nodes if given the same aestethics.

  • ggsankey also comes with custom minimalistic themes that can be used. Here I use theme_sankey.

ggplot(df, aes(x = x, next_x = next_x, node = node, next_node = next_node, fill = factor(node), label = node)) +
  geom_sankey(flow.alpha = .6,
              node.color = "gray30") +
  geom_sankey_label(size = 3, color = "white", fill = "gray40") +
  scale_fill_viridis_d() +
  theme_sankey(base_size = 18) +
  labs(x = NULL) +
  theme(legend.position = "none",
        plot.title = element_text(hjust = .5)) +
  ggtitle("Car features")

geom_alluvial

Alluvial plots are very similiar to sankey plots but have no spaces between nodes and start at y = 0 instead being centered around the x-axis.

ggplot(df, aes(x = x, next_x = next_x, node = node, next_node = next_node, fill = factor(node), label = node)) +
  geom_alluvial(flow.alpha = .6) +
  geom_alluvial_text(size = 3, color = "white") +
  scale_fill_viridis_d() +
  theme_alluvial(base_size = 18) +
  labs(x = NULL) +
  theme(legend.position = "none",
        plot.title = element_text(hjust = .5)) +
  ggtitle("Car features")

geom_sankey_bump

Sankey bump plots is mix between bump plots and sankey and mostly useful for time series. When a group becomes larger than another it bumps above it.

# install.packages("gapminder")
library(gapminder)

df <- gapminder %>%
  group_by(continent, year) %>%
  summarise(gdp = (sum_(pop * gdpPercap)/1e9) %>% round(0), .groups = "keep") %>%
  ungroup()

ggplot(df, aes(x = year,
               node = continent,
               fill = continent,
               value = gdp)) +
  geom_sankey_bump(space = 0, type = "alluvial", color = "transparent", smooth = 6) +
  scale_fill_viridis_d(option = "A", alpha = .8) +
  theme_sankey_bump(base_size = 16) +
  labs(x = NULL,
       y = "GDP ($ bn)",
       fill = NULL,
       color = NULL) +
  theme(legend.position = "bottom") +
  labs(title = "GDP development per continent")

Owner
David Sjoberg
Happy R user. Twitter: @davsjob
David Sjoberg
A filler visualizer built using python

filler-visualizer 42 filler のログをビジュアライズしてスポーツさながら楽しむことができます! Usage (標準入力でvisualizer.pyに渡せばALL OK) 1. 既にあるログをビジュアライズする $ ./filler_vm -t 3 -p1 john_fill

Takumi Hara 1 Nov 04, 2021
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
SummVis is an interactive visualization tool for text summarization.

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Robustness Gym 246 Dec 08, 2022
Visualize data of Vietnam's regions with interactive maps.

Plotting Vietnam Development Map This is my personal project that I use plotly to analyse and visualize data of Vietnam's regions with interactive map

1 Jun 26, 2022
HW_02 Data visualisation task

HW_02 Data visualisation and Matplotlib practice Instructions for HW_02 Idea for data analysis As I was brainstorming ideas and running through databa

9 Dec 13, 2022
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Small project demonstrating the use of Grafana and InfluxDB for monitoring the speed of an internet connection

Speedtest monitor for Grafana A small project that allows internet speed monitoring using Grafana, InfluxDB 2 and Speedtest. Demo Requirements Docker

Joshua Ghali 3 Aug 06, 2021
An interactive UMAP visualization of the MNIST data set.

Code for an interactive UMAP visualization of the MNIST data set. Demo at https://grantcuster.github.io/umap-explorer/. You can read more about the de

grant 70 Dec 27, 2022
This is a small program that prints a user friendly, visual representation, of your current bsp tree

bspcq, q for query A bspc analyzer (utility for bspwm) This is a small program that prints a user friendly, visual representation, of your current bsp

nedia 9 Apr 24, 2022
A tool for automatically generating 3D printable STLs from freely available lidar scan data.

mini-map-maker A tool for automatically generating 3D printable STLs from freely available lidar scan data. Screenshots Tutorial To use this script, g

Mike Abbott 51 Nov 06, 2022
ipyvizzu - Jupyter notebook integration of Vizzu

ipyvizzu - Jupyter notebook integration of Vizzu. Tutorial · Examples · Repository About The Project ipyvizzu is the Jupyter Notebook integration of V

Vizzu 729 Jan 08, 2023
Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

Aditya Thakekar 1 Jan 11, 2022
Visualization of the World Religion Data dataset by Correlates of War Project.

World Religion Data Visualization Visualization of the World Religion Data dataset by Correlates of War Project. Mostly personal project to famirializ

Emile Bangma 1 Oct 15, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Jan 07, 2023
Political elections, appointment, analysis and visualization in Python

Political elections, appointment, analysis and visualization in Python poli-sci-kit is a Python package for political science appointment and election

Andrew Tavis McAllister 9 Dec 01, 2022
Render Jupyter notebook in the terminal

jut - JUpyter notebook Terminal viewer. The command line tool view the IPython/Jupyter notebook in the terminal. Install pip install jut Usage $jut --

Kracekumar 169 Dec 27, 2022
🐞 📊 Ladybug extension to generate 2D charts

ladybug-charts Ladybug extension to generate 2D charts. Installation pip install ladybug-charts QuickStart import ladybug_charts API Documentation Loc

Ladybug Tools 3 Dec 30, 2022
🎨 Python Echarts Plotting Library

pyecharts Python ❤️ ECharts = pyecharts English README 📣 简介 Apache ECharts (incubating) 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达

pyecharts 13.1k Jan 03, 2023
A comprehensive tutorial for plotting focal mechanism

Focal_Mechanisms_Demo A comprehensive tutorial for plotting focal mechanism "beach-balls" using the PyGMT package for Python. (Resulting map of this d

3 Dec 13, 2022
Sparkling Pandas

SparklingPandas SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. Sparkl

366 Oct 27, 2022