Type-safe YAML parser and validator.

Overview

StrictYAML

StrictYAML is a type-safe YAML parser that parses and validates a restricted subset of the YAML specification.

Priorities:

  • Beautiful API
  • Refusing to parse the ugly, hard to read and insecure features of YAML like the Norway problem.
  • Strict validation of markup and straightforward type casting.
  • Clear, readable exceptions with code snippets and line numbers.
  • Acting as a near-drop in replacement for pyyaml, ruamel.yaml or poyo.
  • Ability to read in YAML, make changes and write it out again with comments preserved.
  • Not speed, currently.

Simple example:

# All about the character
name: Ford Prefect
age: 42
possessions:
- Towel
from strictyaml import load, Map, Str, Int, Seq, YAMLError

Default parse result:

>>> load(yaml_snippet)
YAML({'name': 'Ford Prefect', 'age': '42', 'possessions': ['Towel']})

All data is string, list or OrderedDict:

>>> load(yaml_snippet).data
{'name': 'Ford Prefect', 'age': '42', 'possessions': ['Towel']}

Quickstart with schema:

from strictyaml import load, Map, Str, Int, Seq, YAMLError

schema = Map({"name": Str(), "age": Int(), "possessions": Seq(Str())})

42 is now parsed as an integer:

>>> person = load(yaml_snippet, schema)
>>> person.data
{'name': 'Ford Prefect', 'age': 42, 'possessions': ['Towel']}

A YAMLError will be raised if there are syntactic problems, violations of your schema or use of disallowed YAML features:

# All about the character
name: Ford Prefect
age: 42

For example, a schema violation:

try:
    person = load(yaml_snippet, schema)
except YAMLError as error:
    print(error)
while parsing a mapping
  in "<unicode string>", line 1, column 1:
    # All about the character
     ^ (line: 1)
required key(s) 'possessions' not found
  in "<unicode string>", line 3, column 1:
    age: '42'
    ^ (line: 3)

If parsed correctly:

from strictyaml import load, Map, Str, Int, Seq, YAMLError, as_document

schema = Map({"name": Str(), "age": Int(), "possessions": Seq(Str())})

You can modify values and write out the YAML with comments preserved:

person = load(yaml_snippet, schema)
person['age'] = 43
print(person.as_yaml())
# All about the character
name: Ford Prefect
age: 43
possessions:
- Towel

As well as look up line numbers:

>>> person = load(yaml_snippet, schema)
>>> person['possessions'][0].start_line
5

And construct YAML documents from dicts or lists:

print(as_document({"x": 1}).as_yaml())
x: 1

Install

$ pip install strictyaml

Why StrictYAML?

There are a number of formats and approaches that can achieve more or less the same purpose as StrictYAML. I've tried to make it the best one. Below is a series of documented justifications:

Using StrictYAML

How to:

Compound validators:

Scalar validators:

Restrictions:

Design justifications

There are some design decisions in StrictYAML which are controversial and/or not obvious. Those are documented here:

Star Contributors

  • @wwoods
  • @chrisburr

Contributors

  • @eulores
  • @WaltWoods
  • @ChristopherGS
  • @gvx
  • @AlexandreDecan
  • @lots0logs
  • @tobbez
  • @jaredsampson
  • @BoboTIG

Contributing

  • Before writing any code, please read the tutorial on contributing to hitchdev libraries.
  • Before writing any code, if you're proposing a new feature, please raise it on github. If it's an existing feature / bug, please comment and briefly describe how you're going to implement it.
  • All code needs to come accompanied with a story that exercises it or a modification to an existing story. This is used both to test the code and build the documentation.
Visualization of hidden layer activations of small multilayer perceptrons (MLPs)

MLP Hidden Layer Activation Visualization To gain some intuition about the internal representation of simple multi-layer perceptrons (MLPs) I trained

Andreas Köpf 7 Dec 30, 2022
Visualization Data Drug in thailand during 2014 to 2020

Visualization Data Drug in thailand during 2014 to 2020 Data sorce from ข้อมูลเปิดภาครัฐ สำนักงาน ป.ป.ส Inttroducing program Using tkinter module for

Narongkorn 1 Jan 05, 2022
Open-source demos hosted on Dash Gallery

Dash Sample Apps This repository hosts the code for over 100 open-source Dash apps written in Python or R. They can serve as a starting point for your

Plotly 2.7k Jan 07, 2023
Application for viewing pokemon regional variants.

Pokemon Regional Variants Application Application for viewing pokemon regional variants. Run The Source Code Download Python https://www.python.org/do

Michael J Bailey 4 Oct 08, 2021
An open-source tool for visual and modular block programing in python

PyFlow PyFlow is an open-source tool for modular visual programing in python ! Although for now the tool is in Beta and features are coming in bit by

1.1k Jan 06, 2023
Alternative layout visualizer for ZSA Moonlander keyboard

General info This is a keyboard layout visualizer for ZSA Moonlander keyboard (because I didn't find their Oryx or their training tool particularly us

10 Jul 19, 2022
Official Matplotlib cheat sheets

Official Matplotlib cheat sheets

Matplotlib Developers 6.7k Jan 09, 2023
A Graph Learning library for Humans

A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found

Richard Tjörnhammar 1 Feb 08, 2022
visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem

visualize_ML visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem. It is build

Ayush Singh 164 Dec 12, 2022
HiPlot makes understanding high dimensional data easy

HiPlot - High dimensional Interactive Plotting HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and

Facebook Research 2.4k Jan 04, 2023
Calendar heatmaps from Pandas time series data

Note: See MarvinT/calmap for the maintained version of the project. That is also the version that gets published to PyPI and it has received several f

Martijn Vermaat 195 Dec 22, 2022
a plottling library for python, based on D3

Hello August 2013 Hello! Maybe you're looking for a nice Python interface to build interactive, javascript based plots that look as nice as all those

Mike Dewar 1.4k Dec 28, 2022
Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly

Peloton Stats to Google Sheets with Data Visualization through Seaborn and Plotly Problem: 2 peloton users were looking for a way to track their metri

9 Jul 22, 2022
Interactive plotting for Pandas using Vega-Lite

pdvega: Vega-Lite plotting for Pandas Dataframes pdvega is a library that allows you to quickly create interactive Vega-Lite plots from Pandas datafra

Altair 342 Oct 26, 2022
A data visualization curriculum of interactive notebooks.

A data visualization curriculum of interactive notebooks, using Vega-Lite and Altair. This repository contains a series of Python-based Jupyter notebooks.

UW Interactive Data Lab 1.2k Dec 30, 2022
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
This is simply repo for line drawing rendering using freestyle in Blender.

blender_freestyle_line_drawing This is simply repo for line drawing rendering using freestyle in Blender. how to use blender2935 --background --python

MaxLin 3 Jul 02, 2022
Draw interactive NetworkX graphs with Altair

nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib

Zachary Sailer 206 Dec 12, 2022
Lightweight data validation and adaptation Python library.

Valideer Lightweight data validation and adaptation library for Python. At a Glance: Supports both validation (check if a value is valid) and adaptati

Podio 258 Nov 22, 2022
Customizing Visual Styles in Plotly

Customizing Visual Styles in Plotly Code for a workshop originally developed for an Unconference session during the Outlier Conference hosted by Data

Data Design Dimension 9 Aug 03, 2022