Tools for exploratory data analysis in Python

Overview

Dora

Exploratory data analysis toolkit for Python.

Contents

Summary

Dora is a Python library designed to automate the painful parts of exploratory data analysis.

The library contains convenience functions for data cleaning, feature selection & extraction, visualization, partitioning data for model validation, and versioning transformations of data.

The library uses and is intended to be a helpful addition to common Python data analysis tools such as pandas, scikit-learn, and matplotlib.

Setup

$ pip3 install Dora
$ python3
>>> from Dora import Dora

Usage

Reading Data & Configuration

# without initial config
>>> dora = Dora()
>>> dora.configure(output = 'A', data = 'path/to/data.csv')

# is the same as
>>> import pandas as pd
>>> dataframe = pd.read_csv('path/to/data.csv')
>>> dora = Dora(output = 'A', data = dataframe)

>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1

Cleaning

# read data with missing and poorly scaled values
>>> import pandas as pd
>>> df = pd.DataFrame([
...   [1, 2, 100],
...   [2, None, 200],
...   [1, 6, None]
... ])
>>> dora = Dora(output = 0, data = df)
>>> dora.data
   0   1    2
0  1   2  100
1  2 NaN  200
2  1   6  NaN

# impute the missing values (using the average of each column)
>>> dora.impute_missing_values()
>>> dora.data
   0  1    2
0  1  2  100
1  2  4  200
2  1  6  150

# scale the values of the input variables (center to mean and scale to unit variance)
>>> dora.scale_input_values()
>>> dora.data
   0         1         2
0  1 -1.224745 -1.224745
1  2  0.000000  1.224745
2  1  1.224745  0.000000

Feature Selection & Extraction

# feature selection / removing a feature
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1

>>> dora.remove_feature('useless_feature')
>>> dora.data
   A   B  C      D
0  1   2  0   left
1  4 NaN  1  right
2  7   8  2   left

# extract an ordinal feature through one-hot encoding
>>> dora.extract_ordinal_feature('D')
>>> dora.data
   A   B  C  D=left  D=right
0  1   2  0       1        0
1  4 NaN  1       0        1
2  7   8  2       1        0

# extract a transformation of another feature
>>> dora.extract_feature('C', 'twoC', lambda x: x * 2)
>>> dora.data
   A   B  C  D=left  D=right  twoC
0  1   2  0       1        0     0
1  4 NaN  1       0        1     2
2  7   8  2       1        0     4

Visualization

# plot a single feature against the output variable
dora.plot_feature('column-name')

# render plots of each feature against the output variable
dora.explore()

Model Validation

# create random partition of training / validation data (~ 80/20 split)
dora.set_training_and_validation()

# train a model on the data
X = dora.training_data[dora.input_columns()]
y = dora.training_data[dora.output]

some_model.fit(X, y)

# validate the model
X = dora.validation_data[dora.input_columns()]
y = dora.validation_data[dora.output]

some_model.score(X, y)

Data Versioning

# save a version of your data
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1
>>> dora.snapshot('initial_data')

# keep track of changes to data
>>> dora.remove_feature('useless_feature')
>>> dora.extract_ordinal_feature('D')
>>> dora.impute_missing_values()
>>> dora.scale_input_values()
>>> dora.data
   A         B         C    D=left   D=right
0  1 -1.224745 -1.224745  0.707107 -0.707107
1  4  0.000000  0.000000 -1.414214  1.414214
2  7  1.224745  1.224745  0.707107 -0.707107

>>> dora.logs
["self.remove_feature('useless_feature')", "self.extract_ordinal_feature('D')", 'self.impute_missing_values()', 'self.scale_input_values()']

# use a previous version of the data
>>> dora.snapshot('transform1')
>>> dora.use_snapshot('initial_data')
>>> dora.data
   A   B  C      D  useless_feature
0  1   2  0   left                1
1  4 NaN  1  right                1
2  7   8  2   left                1
>>> dora.logs
[]

# switch back to your transformation
>>> dora.use_snapshot('transform1')
>>> dora.data
   A         B         C    D=left   D=right
0  1 -1.224745 -1.224745  0.707107 -0.707107
1  4  0.000000  0.000000 -1.414214  1.414214
2  7  1.224745  1.224745  0.707107 -0.707107
>>> dora.logs
["self.remove_feature('useless_feature')", "self.extract_ordinal_feature('D')", 'self.impute_missing_values()', 'self.scale_input_values()']

Testing

To run the test suite, simply run python3 spec.py from the Dora directory.

Contribute

Pull requests welcome! Feature requests / bugs will be addressed through issues on this repository. While not every feature request will necessarily be handled by me, maintaining a record for interested contributors is useful.

Additionally, feel free to submit pull requests which add features or address bugs yourself.

License

The MIT License (MIT)

Copyright (c) 2016 Nathan Epstein

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Nathan Epstein
Nathan Epstein
Python package for the analysis and visualisation of finite-difference fields.

discretisedfield Marijan Beg1,2, Martin Lang2, Samuel Holt3, Ryan A. Pepper4, Hans Fangohr2,5,6 1 Department of Earth Science and Engineering, Imperia

ubermag 12 Dec 14, 2022
a robust room presence solution for home automation with nearly no false negatives

Argos Room Presence This project builds a room presence solution on top of Argos. Using just a cheap raspberry pi zero w (plus an attached pi camera,

Angad Singh 46 Sep 18, 2022
A simple code for plotting figure, colorbar, and cropping with python

Python Plotting Tools This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show th

Guanying Chen 134 Jan 02, 2023
Extract data from ThousandEyes REST API and visualize it on your customized Grafana Dashboard.

ThousandEyes Grafana Dashboard Extract data from the ThousandEyes REST API and visualize it on your customized Grafana Dashboard. Deploy Grafana, Infl

Flo Pachinger 16 Nov 26, 2022
Matplotlib JOTA style for making figures

Matplotlib JOTA style for making figures This repo has Matplotlib JOTA style to format plots and figures for publications and presentation.

JOTA JORNALISMO 2 May 05, 2022
Pretty Confusion Matrix

Pretty Confusion Matrix Why pretty confusion matrix? We can make confusion matrix by using matplotlib. However it is not so pretty. I want to make con

Junseo Ko 5 Nov 22, 2022
EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs.

EPViz (EEG Prediction Visualizer) EPViz is a tool to aid researchers in developing, validating, and reporting their predictive modeling outputs. A lig

Jeff 2 Oct 19, 2022
Plot toolbox based on Matplotlib, simple and elegant.

Elegant-Plot Plot toolbox based on Matplotlib, simple and elegant. 绘制效果 绘制过程 数据准备 每种图标类型的目录下有data.csv文件,依据样例数据填入自己的数据。

3 Jul 15, 2022
Datapane is the easiest way to create data science reports from Python.

Datapane Teams | Documentation | API Docs | Changelog | Twitter | Blog Share interactive plots and data in 3 lines of Python. Datapane is a Python lib

Datapane 744 Jan 06, 2023
A grammar of graphics for Python

plotnine Latest Release License DOI Build Status Coverage Documentation plotnine is an implementation of a grammar of graphics in Python, it is based

Hassan Kibirige 3.3k Jan 01, 2023
PyPassword is a simple follow up to PyPassphrase

PyPassword PyPassword is a simple follow up to PyPassphrase. After finishing that project it occured to me that while some may wish to use that option

Scotty 2 Jan 22, 2022
Alternative layout visualizer for ZSA Moonlander keyboard

General info This is a keyboard layout visualizer for ZSA Moonlander keyboard (because I didn't find their Oryx or their training tool particularly us

10 Jul 19, 2022
Flow-based visual scripting for Python

A simple visual node editor for Python Ryven combines flow-based visual scripting with Python. It gives you absolute freedom for your nodes and a simp

Leon Thomm 3.1k Jan 06, 2023
哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看、waifu2x等功能。

picacomic-windows 哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看等功能。 功能介绍 登陆分流,还原安卓端的三个分流入口 分类,搜索,排行,收藏夹使用同一的逻辑,滚轮下滑自动加载下一页,双击打开 漫画详情,章节列表和评论列表 下载功能,目

1.8k Dec 31, 2022
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
An(other) implementation of JSON Schema for Python

jsonschema jsonschema is an implementation of JSON Schema for Python. from jsonschema import validate # A sample schema, like what we'd get f

Julian Berman 4k Jan 04, 2023
Create a table with row explanations, column headers, using matplotlib

Create a table with row explanations, column headers, using matplotlib. Intended usage was a small table containing a custom heatmap.

4 Aug 14, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
Design your own matplotlib stylefile interactively

Tired of playing with font sizes and other matplotlib parameters every time you start a new project or write a new plotting function? Want all you plots have the same style? Use matplotlib configurat

yobi byte 207 Dec 08, 2022
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022