A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

Overview

PySvelte

THIS LIBRARY IS TOTALLY UNSUPPORTED. IT IS PROVIDED AS IS, AS AN EXAMPLE OF ONE WAY TO SOLVE A PROBLEM. MANY FEATURES WILL NOT WORK WITHOUT YOU WRITING YOUR OWN config.py FILE.

If we want to understand neural networks, it's essential that we have effective ways of getting lots of information from the innards of those models into a readable form. Often, this will be a data visualization.

Unfortunately, there's an awkward mismatch between workflows for deep learning research and data visualization. The vast majority of deep learning research is done in Python, where sophisticated libraries make it easy to express neural networks and train them in distributed setups with hardware accelerators. Meanwhile, web standards (HTML/Javascript/CSS) provide a rich environment for data visualization. Trying to use Javascript to train models, or Python for data visualization, takes on a very significant handicap. One wants to use the best tools for each task. But simultaneously working in two ecosystems can also be very challenging.

This library is an attempt at bridging these ecosystems. It encourages a very opinionated workflow of how to integrate visualization into the deep learning research workflow. Our design goals include:

  • To make it easy to create bespoke, custom visualizations based on web standards and Svelte, and use them in Python.
  • To encourage visualizations to be modular and reusable.
  • To make it easy to publish persistent visualizations to standalone, sharable pages.
  • To allow researchers who don't know anything about web technologies to use visualizations their colleagues create.

Set Up

Many features in this library (such as publishing visualiations to GCS/S3/AZ buckets), require you to write several functions specific to your own research setup in config.py.

Basic use

The basic idea is that we create a Svelte component inside the src/ folder, say src/Hello.svelte:

<script>
    export let name;
script>
<h2>Hello {name}!h2>

This visualization automatically becomes available in Python as pysvelte.Hello(). This includes tab completion for argument names.

We can now use it as follows.

import pysvelte
pysvelte.Hello(name="World")

(A few details: (1) This should work without directly running any npm build process; pysvelte will trigger necessary builds for you from Python, in order to make visualizations easily usable by those without web expertise. (2) Argument names are mandatory, since mapping argument names based on order would be very fragile as the svelte component is edited. (3) In addition to objects with clear javascript analogues, NumPy arrays can be passed into components and will be exposed on the javascript side as SciJs NdArrays.)

In a jupyter or colab notebook, the visualization should automatically display if its the last thing computed in a cell. One can also use .show() to show items that aren't the last line:

pysvelte.Hello(name="Alice").show()
pysvelte.Hello(name="Bob").show()

Once you configure config.py you should also be able to use .publish() to publish your visualizations and easily share them. By default, new published visualizations can also be shared on slack to make it easier for your colleagues to discover them, and for convenient sharing when pair programming.

pysvelte.Hello(name="World").publish("~~/hello_world.html")

The objects returned when you use a component are pysvelte.Html() objects, which can be added together. This is useful to create pages.

My Hellos Page

") html += pysvelte.Hello(name="Alice") html += pysvelte.Hello(name="Bob") html.publish("~~/hellos.html")">
html = pysvelte.Html("

My Hellos Page

"
) html += pysvelte.Hello(name="Alice") html += pysvelte.Hello(name="Bob") html.publish("~~/hellos.html")

One final feature we want to highlight is that Svelte components can have companion Python files, like this src/Hello.py. This can be used to add doc strings (which appear in tab completion), argument type signatures, do Python-side validation of data for easier debugging, and even modify data before it is passed to Javascript.

0, "Name can not be empty." assert name[0] == name[0].upper(), "Name must be capitalized."">
def init(name: str):
    """A visualization which says hello to a given name."""
    assert len(name) > 0, "Name can not be empty."
    assert name[0] == name[0].upper(), "Name must be capitalized."

Example component

src/AttentionMulti.svelte contains an example of a component we've developed internally which we use to to visualize attention patterns from Transformer self-attention blocks. You can view a rendered version of (a variant of) this component in our recent paper.

See src/AttentionMulti.py for documentation.

Learn More

On the javascript side, the major things to understand are:

  • Web standards (SVG, Canvas, CSS grid, etc)
  • Svelte
  • ndarray (for JS versions of numpy arrays)

D3 is also helpful!

License

Copyright 2021 Anthropic

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Anthropic
Anthropic
Visualization of hidden layer activations of small multilayer perceptrons (MLPs)

MLP Hidden Layer Activation Visualization To gain some intuition about the internal representation of simple multi-layer perceptrons (MLPs) I trained

Andreas Köpf 7 Dec 30, 2022
VDLdraw - Batch plot the log files exported from VisualDL using Matplotlib

VDLdraw Batch plot the log files exported from VisualDL using Matplotlib. At pre

Yizhou Chen 5 Sep 26, 2022
basemap - Plot on map projections (with coastlines and political boundaries) using matplotlib.

Basemap Plot on map projections (with coastlines and political boundaries) using matplotlib. ⚠️ Warning: this package is being deprecated in favour of

Matplotlib Developers 706 Dec 28, 2022
A GUI for Pandas DataFrames

About Demo Installation Usage Features More Info About PandasGUI is a GUI for viewing, plotting and analyzing Pandas DataFrames. Demo Installation Ins

Adam Rose 2.8k Dec 24, 2022
The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain

The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain. The SD provides a novel way to display the coherence function, power, amplitude, phase, and skill sc

Mabel 3 Oct 10, 2022
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
A python wrapper for creating and viewing effects for Matt Parker's christmas tree.

Christmas Tree Visualizer A python wrapper for creating and viewing effects for Matt Parker's christmas tree. Displays py or csv effect files and allo

4 Nov 22, 2022
Apache Superset is a Data Visualization and Data Exploration Platform

Superset A modern, enterprise-ready business intelligence web application. Why Superset? | Supported Databases | Installation and Configuration | Rele

The Apache Software Foundation 50k Jan 06, 2023
Lightweight data validation and adaptation Python library.

Valideer Lightweight data validation and adaptation library for Python. At a Glance: Supports both validation (check if a value is valid) and adaptati

Podio 258 Nov 22, 2022
Color scales in Python for humans

colorlover Color scales for humans IPython notebook: https://plot.ly/ipython-notebooks/color-scales/ import colorlover as cl from IPython.display impo

Plotly 146 Sep 25, 2022
Visualize tensors in a plain Python REPL using Sparklines

Visualize tensors in a plain Python REPL using Sparklines

Shawn Presser 43 Sep 03, 2022
Draw interactive NetworkX graphs with Altair

nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib

Zachary Sailer 206 Dec 12, 2022
Create Badges with stats of Scratch User, Project and Studio. Use those badges in Github readmes, etc.

Scratch-Stats-Badge Create customized Badges with stats of Scratch User, Studio or Project. Use those badges in Github readmes, etc. Examples Document

Siddhesh Chavan 5 Aug 28, 2022
Plotly Dash Command Line Tools - Easily create and deploy Plotly Dash projects from templates

🛠️ dash-tools - Create and Deploy Plotly Dash Apps from Command Line | | | | | Create a templated multi-page Plotly Dash app with CLI in less than 7

Andrew Hossack 50 Dec 30, 2022
Generate a roam research like Network Graph view from your Notion pages.

Notion Graph View Export Notion pages to a Roam Research like graph view.

Steve Sun 214 Jan 07, 2023
Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain amount of time.

Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain

Bohdan Ruban 5 Nov 08, 2022
Python package for hypergraph analysis and visualization.

The HyperNetX library provides classes and methods for the analysis and visualization of complex network data. HyperNetX uses data structures designed to represent set systems containing nested data

Pacific Northwest National Laboratory 304 Dec 27, 2022
A Graph Learning library for Humans

A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found

Richard Tjörnhammar 1 Feb 08, 2022
It's an application to calculate I from v and r. It can also plot a graph between V vs I.

Ohm-s-Law-Visualizer It's an application to calculate I from v and r using Ohm's Law. It can also plot a graph between V vs I. Story I'm doing my Unde

Sihab Sahariar 1 Nov 20, 2021
Comparing USD and GBP Exchange Rates

Currency Data Visualization Comparing USD and GBP Exchange Rates This is a bar graph comparing GBP and USD exchange rates. I chose blue for the UK bec

5 Oct 28, 2021