A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

Overview

PySvelte

THIS LIBRARY IS TOTALLY UNSUPPORTED. IT IS PROVIDED AS IS, AS AN EXAMPLE OF ONE WAY TO SOLVE A PROBLEM. MANY FEATURES WILL NOT WORK WITHOUT YOU WRITING YOUR OWN config.py FILE.

If we want to understand neural networks, it's essential that we have effective ways of getting lots of information from the innards of those models into a readable form. Often, this will be a data visualization.

Unfortunately, there's an awkward mismatch between workflows for deep learning research and data visualization. The vast majority of deep learning research is done in Python, where sophisticated libraries make it easy to express neural networks and train them in distributed setups with hardware accelerators. Meanwhile, web standards (HTML/Javascript/CSS) provide a rich environment for data visualization. Trying to use Javascript to train models, or Python for data visualization, takes on a very significant handicap. One wants to use the best tools for each task. But simultaneously working in two ecosystems can also be very challenging.

This library is an attempt at bridging these ecosystems. It encourages a very opinionated workflow of how to integrate visualization into the deep learning research workflow. Our design goals include:

  • To make it easy to create bespoke, custom visualizations based on web standards and Svelte, and use them in Python.
  • To encourage visualizations to be modular and reusable.
  • To make it easy to publish persistent visualizations to standalone, sharable pages.
  • To allow researchers who don't know anything about web technologies to use visualizations their colleagues create.

Set Up

Many features in this library (such as publishing visualiations to GCS/S3/AZ buckets), require you to write several functions specific to your own research setup in config.py.

Basic use

The basic idea is that we create a Svelte component inside the src/ folder, say src/Hello.svelte:

<script>
    export let name;
script>
<h2>Hello {name}!h2>

This visualization automatically becomes available in Python as pysvelte.Hello(). This includes tab completion for argument names.

We can now use it as follows.

import pysvelte
pysvelte.Hello(name="World")

(A few details: (1) This should work without directly running any npm build process; pysvelte will trigger necessary builds for you from Python, in order to make visualizations easily usable by those without web expertise. (2) Argument names are mandatory, since mapping argument names based on order would be very fragile as the svelte component is edited. (3) In addition to objects with clear javascript analogues, NumPy arrays can be passed into components and will be exposed on the javascript side as SciJs NdArrays.)

In a jupyter or colab notebook, the visualization should automatically display if its the last thing computed in a cell. One can also use .show() to show items that aren't the last line:

pysvelte.Hello(name="Alice").show()
pysvelte.Hello(name="Bob").show()

Once you configure config.py you should also be able to use .publish() to publish your visualizations and easily share them. By default, new published visualizations can also be shared on slack to make it easier for your colleagues to discover them, and for convenient sharing when pair programming.

pysvelte.Hello(name="World").publish("~~/hello_world.html")

The objects returned when you use a component are pysvelte.Html() objects, which can be added together. This is useful to create pages.

My Hellos Page

") html += pysvelte.Hello(name="Alice") html += pysvelte.Hello(name="Bob") html.publish("~~/hellos.html")">
html = pysvelte.Html("

My Hellos Page

"
) html += pysvelte.Hello(name="Alice") html += pysvelte.Hello(name="Bob") html.publish("~~/hellos.html")

One final feature we want to highlight is that Svelte components can have companion Python files, like this src/Hello.py. This can be used to add doc strings (which appear in tab completion), argument type signatures, do Python-side validation of data for easier debugging, and even modify data before it is passed to Javascript.

0, "Name can not be empty." assert name[0] == name[0].upper(), "Name must be capitalized."">
def init(name: str):
    """A visualization which says hello to a given name."""
    assert len(name) > 0, "Name can not be empty."
    assert name[0] == name[0].upper(), "Name must be capitalized."

Example component

src/AttentionMulti.svelte contains an example of a component we've developed internally which we use to to visualize attention patterns from Transformer self-attention blocks. You can view a rendered version of (a variant of) this component in our recent paper.

See src/AttentionMulti.py for documentation.

Learn More

On the javascript side, the major things to understand are:

  • Web standards (SVG, Canvas, CSS grid, etc)
  • Svelte
  • ndarray (for JS versions of numpy arrays)

D3 is also helpful!

License

Copyright 2021 Anthropic

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Anthropic
Anthropic
Visualize and compare datasets, target values and associations, with one line of code.

In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat

Francois Bertrand 2.3k Jan 05, 2023
Epagneul is a tool to visualize and investigate windows event logs

epagneul Epagneul is a tool to visualize and investigate windows event logs. Dep

jurelou 190 Dec 13, 2022
Extensible, parallel implementations of t-SNE

openTSNE openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction al

Pavlin Poličar 1.1k Jan 03, 2023
Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Tomás Capretto 93 Dec 28, 2022
Python scripts to manage Chia plots and drive space, providing full reports. Also monitors the number of chia coins you have.

Chia Plot, Drive Manager & Coin Monitor (V0.5 - April 20th, 2021) Multi Server Chia Plot and Drive Management Solution Be sure to ⭐ my repo so you can

338 Nov 25, 2022
Create animated and pretty Pandas Dataframe or Pandas Series

Rich DataFrame Create animated and pretty Pandas Dataframe or Pandas Series, as shown below: Installation pip install rich-dataframe Usage Minimal exa

Khuyen Tran 92 Dec 26, 2022
Data visualization using matplotlib

Data visualization using matplotlib project instructions Top 5 Most Common Coffee Origins In this visualization I used data from Ankur Chavda on Kaggl

13 Oct 27, 2021
Python support for Godot 🐍🐍🐍

Godot Python, because you want Python on Godot ! The goal of this project is to provide Python language support as a scripting module for the Godot ga

Emmanuel Leblond 1.4k Jan 04, 2023
Fast visualization of radar_scenes based on oleschum/radar_scenes

RadarScenes Tools About This python package provides fast visualization for the RadarScenes dataset. The Open GL based visualizer is smoother than ole

Henrik Söderlund 2 Dec 09, 2021
Sci palettes for matplotlib/seaborn

sci palettes for matplotlib/seaborn Installation python3 -m pip install sci-palettes Usage import seaborn as sns import matplotlib.pyplot as plt impor

Qingdong Su 2 Jun 07, 2022
Focus on Algorithm Design, Not on Data Wrangling

The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.

Zensors 37 Nov 25, 2022
Sky attention heatmap of submissions to astrometry.net

astroheat Installation Requires Python 3.6+, Tested with Python 3.9.5 Install library dependencies pip install -r requirements.txt The program require

4 Jun 20, 2022
This is a place where I'm playing around with pandas to analyze data in a csv/excel file.

pandas-csv-excel-analysis This is a place where I'm playing around with pandas to analyze data in a csv/excel file. 0-start A very simple cheat sheet

Chuqin 3 Oct 05, 2022
A custom qq-plot for two sample data comparision

QQ-Plot 2 Sample Just a gist to include the custom code to draw a qq-plot in python when dealing with a "two sample problem". This means when u try to

1 Dec 20, 2021
Practical-statistics-for-data-scientists - Code repository for O'Reilly book

Code repository Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python by Peter Bruce, Andrew Bruce, and Peter Gedeck Pub

1.7k Jan 04, 2023
Lightweight data validation and adaptation Python library.

Valideer Lightweight data validation and adaptation library for Python. At a Glance: Supports both validation (check if a value is valid) and adaptati

Podio 258 Nov 22, 2022
Editor and Presenter for Manim Generated Content.

Editor and Presenter for Manim Generated Content. Take a look at the Working Example. More information can be found on the documentation. These Browse

Manim Community 149 Dec 29, 2022
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
Insert SVGs into matplotlib

Insert SVGs into matplotlib

Andrew White 35 Dec 29, 2022
Runtime analysis of code with plotting

Runtime analysis of code with plotting A quick comparison among Python, Cython, and the C languages A Programming Assignment regarding the Programming

Cena Ashoori 2 Dec 24, 2021