A Graph Learning library for Humans

Overview

A Graph Learning library for Humans

These novel algorithms include but are not limited to:

  • A graph construction and graph searching class can be found here (NodeGraph). It was developed and invented as a faster alternative for hierarchical DAG construction and searching.
  • A fast DBSCAN method utilizing my connectivity code as invented during my PhD.
  • A NLP pattern matching algorithm useful for sequence alignment clustering.
  • High dimensional alignment code for aligning models to data.
  • An SVD based variant of the Distance Geometry algorithm. For going from relative to absolute coordinates.

License DOI Downloads

Visit the active code via : https://github.com/richardtjornhammar/graphtastic

Pip installation with :

pip install graphtastic

Version controlled installation of the Graphtastic library

The Graphtastic library

In order to run these code snippets we recommend that you download the nix package manager. Nix package manager links from Februari 2022:

https://nixos.org/download.html

$ curl -L https://nixos.org/nix/install | sh

If you cannot install it using your Wintendo then please consider installing Windows Subsystem for Linux first:

https://docs.microsoft.com/en-us/windows/wsl/install-win10

In order to run the code in this notebook you must enter a sensible working environment. Don't worry! We have created one for you. It's version controlled against python3.9 (and experimental python3.10 support) and you can get the file here:

https://github.com/richardtjornhammar/graphtastic/blob/master/env/env39.nix

Since you have installed Nix as well as WSL, or use a Linux (NixOS) or bsd like system, you should be able to execute the following command in a termnial:

$ nix-shell env39.nix

Now you should be able to start your jupyter notebook locally:

$ jupyter-notebook graphhaxxor.ipynb

and that's it.

EXAMPLE 0

Running

import graphtastic.graphs as gg
import graphtastic.clustering as gl
import graphtastic.fit as gf
import graphtastic.convert as gc

Should work if the install was succesful

Example 1 : Absolute and relative coordinates

In this example, we will use the SVD based distance geometry method to go between absolute coordinates, relative coordinate distances and back to ordered absolute coordinates. Absolute coordinates are float values describing the position of something in space. If you have several of these then the same information can be conveyed via the pairwise distance graph. Going from absolute coordinates to pairwise distances is simple and only requires you to calculate all the pairwise distances between your absolute coordinates. Going back to mutually orthogonal ordered coordinates from the pariwise distances is trickier, but a solved problem. The distance geometry can be obtained with SVD and it is implemented in the graphtastic.fit module under the name distance_matrix_to_absolute_coordinates. We start by defining coordinates afterwhich we can calculate the pair distance matrix and transforming it back by using the code below

import numpy as np

coordinates = np.array([[-23.7100 ,  24.1000 ,  85.4400],
  [-22.5600 ,  23.7600 ,  85.6500],
  [-21.5500 ,  24.6200 ,  85.3800],
  [-22.2600 ,  22.4200 ,  86.1900],
  [-23.2900 ,  21.5300 ,  86.4800],
  [-20.9300 ,  22.0300 ,  86.4300],
  [-20.7100 ,  20.7600 ,  86.9400],
  [-21.7900 ,  19.9300 ,  87.1900],
  [-23.0300 ,  20.3300 ,  86.9600],
  [-24.1300 ,  19.4200 ,  87.2500],
  [-23.7400 ,  18.0500 ,  87.0000],
  [-24.4900 ,  19.4600 ,  88.7500],
  [-23.3700 ,  19.8900 ,  89.5200],
  [-24.8500 ,  18.0000 ,  89.0900],
  [-23.9600 ,  17.4800 ,  90.0800],
  [-24.6600 ,  17.2400 ,  87.7500],
  [-24.0800 ,  15.8500 ,  88.0100],
  [-23.9600 ,  15.1600 ,  86.7600],
  [-23.3400 ,  13.7100 ,  87.1000],
  [-21.9600 ,  13.8700 ,  87.6300],
  [-24.1800 ,  13.0300 ,  88.1100],
  [-23.2900 ,  12.8200 ,  85.7600],
  [-23.1900 ,  11.2800 ,  86.2200],
  [-21.8100 ,  11.0000 ,  86.7000],
  [-24.1500 ,  11.0300 ,  87.3200],
  [-23.5300 ,  10.3200 ,  84.9800],
  [-23.5400 ,   8.9800 ,  85.4800],
  [-23.8600 ,   8.0100 ,  84.3400],
  [-23.9800 ,   6.5760 ,  84.8900],
  [-23.2800 ,   6.4460 ,  86.1300],
  [-23.3000 ,   5.7330 ,  83.7800],
  [-22.7300 ,   4.5360 ,  84.3100],
  [-22.2000 ,   6.7130 ,  83.3000],
  [-22.7900 ,   8.0170 ,  83.3800],
  [-21.8100 ,   6.4120 ,  81.9200],
  [-20.8500 ,   5.5220 ,  81.5200],
  [-20.8300 ,   5.5670 ,  80.1200],
  [-21.7700 ,   6.4720 ,  79.7400],
  [-22.3400 ,   6.9680 ,  80.8000],
  [-20.0100 ,   4.6970 ,  82.1500],
  [-19.1800 ,   3.9390 ,  81.4700] ]);

if __name__=='__main__':

    import graphtastic.fit as gf

    distance_matrix = gf.absolute_coordinates_to_distance_matrix( coordinates )
    ordered_coordinates = gf.distance_matrix_to_absolute_coordinates( distance_matrix , n_dimensions=3 )

    print ( ordered_coordinates )

You will notice that the largest variation is now aligned with the X axis, the second most variation aligned with the Y axis and the third most, aligned with the Z axis while the graph topology remained unchanged.

Example 2 : Deterministic DBSCAN

DBSCAN is a clustering algorithm that can be seen as a way of rejecting points, from any cluster, that are positioned in low dense regions of a point cloud. This introduces holes and may result in a larger segment, that would otherwise be connected via a non dense link to become disconnected and form two segments, or clusters. The rejection criterion is simple. The central concern is to evaluate a distance matrix with an applied cutoff this turns the distances into true or false values depending on if a pair distance between point i and j is within the distance cutoff. This new binary Neighbour matrix tells you wether or not two points are neighbours (including itself). The DBSCAN criterion states that a point is not part of any cluster if it has fewer than minPts neighbors. Once you've calculated the distance matrix you can immediately evaluate the number of neighbors each point has and the rejection criterion, via . If the rejection vector R value of a point is True then all the pairwise distances in the distance matrix of that point is set to a value larger than epsilon. This ensures that a distance matrix search will reject those points as neighbours of any other for the choosen epsilon. By tracing out all points that are neighbors and assessing the connectivity (search for connectivity) you can find all the clusters.

import numpy as np
from graphtastic.clustering import dbscan, reformat_dbscan_results
from graphtastic.fit import absolute_coordinates_to_distance_matrix

N   = 100
N05 = int ( np.floor(0.5*N) )
R   = 0.25*np.random.randn(N).reshape(N05,2) + 1.5
P   = 0.50*np.random.randn(N).reshape(N05,2)

coordinates = np.array([*P,*R])

results = dbscan ( distance_matrix = absolute_coordinates_to_distance_matrix(coordinates,bInvPow=True) , eps=0.45 , minPts=4 )
clusters = reformat_dbscan_results(results)
print ( clusters )

Example 3 : NodeGraph, distance matrix to DAG

Here we demonstrate how to convert the graph coordinates into a hierarchy. The leaf nodes will correspond to the coordinate positions.

import numpy as np

coordinates = np.array([[-23.7100 ,  24.1000 ,  85.4400],
  [-22.5600 ,  23.7600 ,  85.6500],
  [-21.5500 ,  24.6200 ,  85.3800],
  [-22.2600 ,  22.4200 ,  86.1900],
  [-23.2900 ,  21.5300 ,  86.4800],
  [-20.9300 ,  22.0300 ,  86.4300],
  [-20.7100 ,  20.7600 ,  86.9400],
  [-21.7900 ,  19.9300 ,  87.1900],
  [-23.0300 ,  20.3300 ,  86.9600],
  [-24.1300 ,  19.4200 ,  87.2500],
  [-23.7400 ,  18.0500 ,  87.0000],
  [-24.4900 ,  19.4600 ,  88.7500],
  [-23.3700 ,  19.8900 ,  89.5200],
  [-24.8500 ,  18.0000 ,  89.0900],
  [-23.9600 ,  17.4800 ,  90.0800],
  [-24.6600 ,  17.2400 ,  87.7500],
  [-24.0800 ,  15.8500 ,  88.0100],
  [-23.9600 ,  15.1600 ,  86.7600],
  [-23.3400 ,  13.7100 ,  87.1000],
  [-21.9600 ,  13.8700 ,  87.6300],
  [-24.1800 ,  13.0300 ,  88.1100],
  [-23.2900 ,  12.8200 ,  85.7600],
  [-23.1900 ,  11.2800 ,  86.2200],
  [-21.8100 ,  11.0000 ,  86.7000],
  [-24.1500 ,  11.0300 ,  87.3200],
  [-23.5300 ,  10.3200 ,  84.9800],
  [-23.5400 ,   8.9800 ,  85.4800],
  [-23.8600 ,   8.0100 ,  84.3400],
  [-23.9800 ,   6.5760 ,  84.8900],
  [-23.2800 ,   6.4460 ,  86.1300],
  [-23.3000 ,   5.7330 ,  83.7800],
  [-22.7300 ,   4.5360 ,  84.3100],
  [-22.2000 ,   6.7130 ,  83.3000],
  [-22.7900 ,   8.0170 ,  83.3800],
  [-21.8100 ,   6.4120 ,  81.9200],
  [-20.8500 ,   5.5220 ,  81.5200],
  [-20.8300 ,   5.5670 ,  80.1200],
  [-21.7700 ,   6.4720 ,  79.7400],
  [-22.3400 ,   6.9680 ,  80.8000],
  [-20.0100 ,   4.6970 ,  82.1500],
  [-19.1800 ,   3.9390 ,  81.4700] ]);


if __name__=='__main__':

    import graphtastic.graphs as gg
    import graphtastic.fit as gf
    GN = gg.NodeGraph()
    #
    # bInvPow refers to the distance type. If True then R distances are returned
    # instead of R2 (R**2) distances. That is also computing the square root if True
    #
    distm = gf.absolute_coordinates_to_distance_matrix( coordinates , bInvPow=True )
    #
    # Now a Graph DAG is constructed from the pairwise distances
    GN.distance_matrix_to_graph_dag( distm )
    #
    # And write it to a json file so that we may employ JS visualisations
    # such as D3 or other nice packages to view our hierarchy
    GN.write_json( jsonfile='./graph_hierarchy.json' )

Manually updated code backups for this library :

GitLab | https://gitlab.com/richardtjornhammar/graphtastic

CSDN | https://codechina.csdn.net/m0_52121311/graphtastic

You might also like...
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

🐍PyNode Next allows you to easily create beautiful graph visualisations and animations
🐍PyNode Next allows you to easily create beautiful graph visualisations and animations

PyNode Next A complete rewrite of PyNode for the modern era. Up to five times faster than the original PyNode. PyNode Next allows you to easily create

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

Declarative statistical visualization library for Python
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Plotting library for IPython/Jupyter notebooks
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

Cartopy - a cartographic python library with matplotlib support
Cartopy - a cartographic python library with matplotlib support

Cartopy is a Python package designed to make drawing maps for data analysis and visualisation easy. Table of contents Overview Get in touch License an

Releases(v0.12.0)
Owner
Richard Tjörnhammar
PhD in Biological physics https://richardtjornhammar.github.io
Richard Tjörnhammar
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
Create a table with row explanations, column headers, using matplotlib

Create a table with row explanations, column headers, using matplotlib. Intended usage was a small table containing a custom heatmap.

4 Aug 14, 2022
Learning Convolutional Neural Networks with Interactive Visualization.

CNN Explainer An interactive visualization system designed to help non-experts learn about Convolutional Neural Networks (CNNs) For more information,

Polo Club of Data Science 6.3k Jan 01, 2023
DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

DataVisualization - The evolution of my arduino and python journey. New level of competence achieved

1 Jan 03, 2022
A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects.

Orbitals in Python A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects, and o

Prakrisht Dahiya 1 Nov 25, 2021
Visualize the bitcoin blockchain from your local node

Project Overview A new feature in Bitcoin Core 0.20 allows users to dump the state of the blockchain (the UTXO set) using the command dumptxoutset. I'

18 Sep 11, 2022
A simple script that displays pixel-based animation on GitHub Activity

GitHub Activity Animator This project contains a simple Javascript snippet that produces an animation on your GitHub activity tracker. The project als

16 Nov 15, 2021
A dashboard built using Plotly-Dash for interactive visualization of Dex-connected individuals across the country.

Dashboard For The DexConnect Platform of Dexterity Global Working prototype submission for internship at Dexterity Global Group. Dashboard for real ti

Yashasvi Misra 2 Jun 15, 2021
Visualization of hidden layer activations of small multilayer perceptrons (MLPs)

MLP Hidden Layer Activation Visualization To gain some intuition about the internal representation of simple multi-layer perceptrons (MLPs) I trained

Andreas Köpf 7 Dec 30, 2022
A research of IT labor market based especially on hh.ru. Salaries, rate of technologies and etc.

hh_ru_research Проект реализован в учебных целях анализа рынка труда, в особенности по hh.ru Input data В качестве входных данных используются сериали

3 Sep 07, 2022
kyle's vision of how datadog's python client should look

kyle's datadog python vision/proposal not for production use See examples/comprehensive.py for a mostly working example of the proposed API. 📈 🐶 ❤️

Kyle Verhoog 2 Nov 21, 2021
Python package for hypergraph analysis and visualization.

The HyperNetX library provides classes and methods for the analysis and visualization of complex network data. HyperNetX uses data structures designed to represent set systems containing nested data

Pacific Northwest National Laboratory 304 Dec 27, 2022
trade bot connected to binance API/ websocket.,, include dashboard in plotly dash to visualize trades and balances

Crypto trade bot 1. What it is Trading bot connected to Binance API. This project made for fun. So ... Do not use to trade live before you have backte

G 3 Oct 07, 2022
Pglive - Pglive package adds support for thread-safe live plotting to pyqtgraph

Live pyqtgraph plot Pglive package adds support for thread-safe live plotting to

Martin Domaracký 15 Dec 10, 2022
CompleX Group Interactions (XGI) provides an ecosystem for the analysis and representation of complex systems with group interactions.

XGI CompleX Group Interactions (XGI) is a Python package for the representation, manipulation, and study of the structure, dynamics, and functions of

Complex Group Interactions 67 Dec 28, 2022
Simple spectra visualization tool for astronomers

SpecViewer A simple visualization tool for astronomers. Dependencies Python = 3.7.4 PyQt5 = 5.15.4 pyqtgraph == 0.10.0 numpy = 1.19.4 How to use py

5 Oct 07, 2021
Schema validation just got Pythonic

Schema validation just got Pythonic schema is a library for validating Python data structures, such as those obtained from config-files, forms, extern

Vladimir Keleshev 2.7k Jan 06, 2023
Insert SVGs into matplotlib

Insert SVGs into matplotlib

Andrew White 35 Dec 29, 2022
Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset.

Visualization-of-Human3.6M-Dataset Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset. human-motion-prediction

Gaurav Kumar Yadav 5 Nov 18, 2022