Diagnostic tests for linguistic capacities in language models

Overview

LM diagnostics

This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models, by Allyson Ettinger.

Diagnostic test data

The datasets folder contains TSV files with data for each diagnostic test, along with explanatory README files for each dataset.

Code

[All code now updated to be run with Python 3.]

The code in this section can be used to process the diagnostic datasets for input to a language model, and then to run the diagnostic tests on that language model's predictions. The code should be used in three steps:

Step 1: Process datasets to produce inputs for LM

proc_datasets.py can be used to process the provided datasets into 1) <testname>-contextlist files containing contexts (one per line) on which the LM's predictions should be conditioned, and b) <testname>-targetlist files containing target words (one per line, aligned with the contexts in *-contextlist) for which you will need probabilities conditioned on the corresponding contexts. Repeats in *-contextlist are intentional, to align with the targets in *-targetlist.

Basic usage:

python proc_datasets.py \
  --outputdir <location for output files> \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv \
  --add_mask_tok
  • add_mask_tok flag will append '[MASK]' to the contexts in *-contextlist, for use with BERT.
  • <testname> comes from the following list: cprag, role, negsimp, negnat for CPRAG-34, ROLE-88, NEG-88-SIMP and NEG-88-NAT, respectively.

Step 2: Get LM predictions/probabilities

You will need to produce two files: one containing top word predictions conditioned on each context, and one containing the probabilities for each target word conditioned on its corresponding context.

Predictions: Model word predictions should be written to a file with naming modelpreds-<testname>-<modelname>. Each line of this file should contain the top word predictions conditioned on the context in the corresponding line in *-contextlist. Word predictions on a given line should be separated by whitespace. Number of predictions per line should be no less than the highest k that you want to use for accuracy tests.

Probabilities Model target probabilities should be written to a file with naming modeltgtprobs-<testname>-<modelname>. Each line of this file should contain the probability of the target word on the corresponding line of *-targetlist, conditioned on the context on the corresponding line of *-contextlist.

  • <testname> list is as above. <modelname> should be the name of the model that will be input to the code in Step 3.

Step 3: Run accuracy and sensitivity tests for each diagnostic

prediction_accuracy_tests.py takes modelpreds-<testname>-<modelname> as input and runs word prediction accuracy tests.

Basic usage:

python prediction_accuracy_tests.py \
  --preddir <location of modelpreds-<testname>-<modelname>> \
  --resultsdir <location for results files> \
  --models <names of models to be tested, e.g., bert-base-uncased bert-large-uncased> \
  --k_values <list of k values to be tested, e.g., 1 5> \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv

sensitivity_tests.py takes modeltgtprobs-<testname>-<modelname> as input and runs sensitivity tests.

Basic usage:

python sensitivity_tests.py \
  --probdir <location of modelpreds-<testname>-<modelname>> \
  --resultsdir <location for results files> \
  --models <names of models to be tested, e.g., bert-base-uncased bert-large-uncased> \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv

Experimental code

run_diagnostics_bert.py is the code that was used for the experiments on BERTBASE and BERTLARGE reported in the paper, including perturbations.

Example usage:

python run_diagnostics_bert.py \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --resultsdir <location for results files> \
  --bertbase <BERT BASE location> \
  --bertlarge <BERT LARGE location> \
  --incl_perturb
  • bertbase and bertlarge specify locations for PyTorch BERTBASE and BERTLARGE models -- each folder is expected to include vocab.txt, bert_config.json, and pytorch_model.bin for the corresponding PyTorch BERT model. (Note that experiments were run with the original pytorch-pretrained-bert version, so I can't guarantee identical results with the updated pytorch-transformers.)
  • incl_perturb runs experiments with all perturbations reported in the paper. Without this flag, only runs experiments without perturbations.
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022