A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

Overview

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

This repository contains the source code (developed using TensorFlow 2.1.0 and Keras 2.3.0) for the proposed incremental instance segmentation framework.

Block-Diagram

Block Diagram of the Proposed Framework

The documentation related to installation, configuration, dataset, training protocols is given below. Moroever, the detailed architectural description of the CIE-Net is available in 'model_summary.txt' file.

Installation and Configuration

  1. Platform: Anaconda and MATLAB R2020a (with deep learning, image processing and computer vision toolbox).

  2. Install required packages from the provided ‘environment.yml’ file or alternatively you can install following packages yourself:

    • Python 3.7.9 or above
    • TensorFlow 2.1.0 or above
    • Keras 2.3.0 or above
    • OpenCV 4.2 or above
    • imgaug 0.2.9 or above
    • tqdm
  3. Download the desired dataset (the dataset description file is also available in this repository):

  4. The mask-level annotations for the baggage X-ray datasets can be downloaded from the following links:

  5. The box-level annotations for both baggage X-ray datasets are already released by the dataset authors.

  6. For COCO dataset, please use the MaskAPIs (provided by the dataset authors) to generate the mask-level and box-level annotations from the JSON files. We have also uploaded these APIs within this repository.

  7. For training, please provide the training configurations of the desired dataset in ‘config.py’ file.

  8. Afterward, create the two folders named as 'trainingDataset' and 'testingDataset', and arrange the dataset scans w.r.t the following hierarchy:

├── trainingDataset
│   ├── trainGT_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainGT_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── trainImages_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainImages_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── valGT_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valGT_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png
│   ├── valImages_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valImages_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png

├── testingDataset
│   ├── test_images
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── test_annotations
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── segmentation_results1
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ...
│   ├── segmentation_resultsK
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
- Note: the images and annotations should have same name and extension (preferably png).
  1. The 'segmentation_resultsK' folder in 'testingDataset' will contains the results of K-instance-aware segmentation.
  2. The summary of the proposed CIE-Net model is available in 'model_summary.txt'.

Steps

  1. Use 'trainer.py' to incrementally train the CIE-Net. The following script will also save the model instances in the h5 file. For MvRF-CNN, use 'trainer2.py' script.
  2. Use 'tester.py' file to extract segmentation results for each model instance (the model results will be saved in 'segmentation_resultsk' folder for kth model instance). For MvRF-CNN, use 'tester2.py' script.
  3. We have also provided some converter scripts to convert e.g. original SIXray XML annotations into MATLAB structures, to port TF keras models into MATLAB etc.
  4. Also, we have provided some utility files (in the 'utils' folder) to resize dataset scans, to generate bounding boxes from CIE-Net mask output, to change the coloring scheme of the CIE-Net outputs for better visualization, and to apply post-processing etc.
  5. Please note that to run MvRF-CNN, the images have to be resized to the resolution of 320x240x3. The resizer script is in the 'utils' folder.

Citation

If you use the proposed incremental instance segmentation framework (or any part of this code) in your work, then please cite the following paper:

@article{cienet,
  title   = {A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items},
  author  = {Taimur Hassan and Samet Akcay and Mohammed Bennamoun and Salman Khan and Naoufel Werghi},
  journal = {IEEE Transactions on Systems, Man, and Cybernetics: Systems},
  year = {2021}
}

Contact

Please feel free to contact us in case of any query at: [email protected]

Owner
Taimur Hassan
Taimur Hassan
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022