A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Overview

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge

This is a platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Change Log

  • 2022-05-16: improved engine backend (Linux) with better stability (v1.0)
    • Check out Supported Platforms for download links.
    • Make sure to update to the latest version of the engine if you would like to use depth map or enemy state features.
  • 2022-05-18: updated engine backend for Windows and MacOS (v1.0)

Competition Overview

With a focus on learning intelligent agents in open-world games, this year we are hosting a new contest called Wilderness Scavenger. In this new game, which features a Battle Royale-style 3D open-world gameplay experience and a random PCG-based world generation, participants must learn agents that can perform subtasks common to FPS games, such as navigation, scouting, and skirmishing. To win the competition, agents must have strong perception of complex 3D environments and then learn to exploit various environmental structures (such as terrain, buildings, and plants) by developing flexible strategies to gain advantages over other competitors. Despite the difficulty of this goal, we hope that this new competition can serve as a cornerstone of research in AI-based gaming for open-world games.

Features

  • A light-weight 3D open-world FPS game developed with Unity3D game engine
  • Rendering-off game acceleration for fast training and evaluation
  • Large open world environment providing high freedom of agent behaviors
  • Highly customizable game configuration with random supply distribution and dynamic refresh
  • PCG-based map generation with randomly spawned buildings, plants and obstacles (100 training maps)
  • Interactive replay tool for game record visualization

Basic Structures

We developed this repository to provide a training and evaluation platform for the researchers interested in open-world FPS game AI. For getting started quickly, a typical workspace structure when using this repository can be summarized as follows:

.
├── examples  # providing starter code examples and training baselines
│   ├── envs/...
│   ├── basic.py
│   ├── basic_track1_navigation.py
│   ├── basic_track2_supply_gather.py
│   ├── basic_track3_supply_battle.py
│   ├── baseline_track1_navigation.py
│   ├── baseline_track2_supply_gather.py
│   └── baseline_track3_supply_battle.py
├── inspirai_fps  # the game play API source code
│   ├── lib/...
│   ├── __init__.py
│   ├── gamecore.py
│   ├── raycast_manager.py
│   ├── simple_command_pb2.py
│   ├── simple_command_pb2_grpc.py
│   └── utils.py
└── fps_linux  # the engine backend (Linux)
    ├── UnityPlayer.so
    ├── fps.x86_64
    ├── fps_Data/...
    └── logs/...
  • fps_linux (requires to be manually downloaded and unzipped to your working directory): the (Linux) engine backend extracted from our game development project, containing all the game related assets, binaries and source codes.
  • inspirai_fps: the python gameplay API for agent training and testing, providing the core Game class and other useful tool classes and functions.
  • examples: we provide basic starter codes for each game mode targeting each track of the challenge, and we also give out our implementation of some baseline solutions based on ray.rllib reinforcement learning framework.

Supported Platforms

We support the multiple platforms with different engine backends, including:

Installation (from source)

To use the game play API, you need to first install the package inspirai_fps by following the commands below:

git clone https://github.com/inspirai/wilderness-scavenger
cd wilderness-scavenger
pip install .

We recommend installing this package with python 3.8 (which is our development environment), so you may first create a virtual env using conda and finish installation:

$ conda create -n WildScav python=3.8
$ conda activate WildScav
(WildScav) $ pip install .

Installation (from PyPI)

Note: this may not be maintained in time. We strongly recommend using the installation method above

Alternatively, you can install the package from PyPI directly. But note that this will only install the gameplay API inspirai_fps, not the backend engine. So you still need to manually download the correct engine backend from the Supported Platfroms section.

pip install inspirai-fps

Loading Engine Backend

To successfully run the game, you need to make sure the game engine backend for your platform is downloaded and set the engine_dir parameter of the Game init function correctly. For example, here is a code snippet in the script example/basic.py:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--engine-dir", type=str, default="../fps_linux")
...
game = Game(..., engine_dir=args.engine_dir, ...)

Loading Map Data

To get access to some features like realtime depth map computation or randomized player spawning, you need to load the map data and load them into the Game. After this, once you turn on the depth map rendering, the game server will automatically compute a depth map viewing from the player's first person perspective at each time step.

  1. Download map data from Google Drive or Feishu and decompress the downloaded file to your preferred directory (e.g., <WORKDIR>/map_data).
  2. Set map_dir parameter of the Game initializer accordingly
  3. Set the map_id as you like
  4. Turn on the function of depth map computation
  5. Turn on random start location to spawn agents at random places

Read the following code snippet in the script examples/basic.py as an example:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--map-id", type=int, default=1)
parser.add_argument("--use-depth-map", action="store_true")
parser.add_argument("--random-start-location", action="store_true")
parser.add_argument("--map-dir", type=str, default="../map_data")
...
game = Game(map_dir=args.map_dir, ...)
game.set_map_id(args.map_id)  # this will load the valid locations of the specified map
...
if args.use_depth_map:
    game.turn_on_depth_map()
    game.set_depth_map_size(380, 220, 200)  # width (pixels), height (pixels), depth_limit (meters)
...
if args.random_start_location:
    for agent_id in range(args.num_agents):
        game.random_start_location(agent_id, indoor=False)  # this will randomly spawn the player at a valid outdoor location, or indoor location if indoor is True
...
game.new_episode()  # start a new episode, this will load the mesh of the specified map

Gameplay Visualization

We have also developed a replay visualization tool based on the Unity3D game engine. It is similar to the spectator mode common in multiplayer FPS games, which allows users to interactively follow the gameplay. Users can view an agent's action from different perspectives and also switch between multiple agents or different viewing modes (e.g., first person, third person, free) to see the entire game in a more immersive way. Participants can download the tool for their specific platforms here:

To use this tool, follow the instruction below:

  • Decompress the downloaded file to anywhere you prefer.
  • Turn on recording function with game.turn_on_record(). One record file will be saved at the end of each episode.

Find the replay files under the engine directory according to your platform:

  • Linux: <engine_dir>/fps_Data/StreamingAssets/Replay
  • Windows: <engine_dir>\FPSGameUnity_Data\StreamingAssets\Replay
  • MacOS: <engine_dir>/Contents/Resources/Data/StreamingAssets/Replay

Copy replay files you want to the replay tool directory according to your platform and start the replay tool.

For Windows users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/FPSGameUnity_Data/StreamingAssets/Replay
  • Run FPSGameUnity.exe to start the application.

For MacOS users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/Contents/Resources/Data/StreamingAssets/Replay
  • Run fps.app to start the application.

In the replay tool, you can:

  • Select the record you want to watch from the drop-down menu and click PLAY to start playing the record.
  • During the replay, users can make the following operations
    • Press Tab: pause or resume
    • Press E: switch observation mode (between first person, third person, free)
    • Press Q: switch between multiple agents
    • Press ECS: stop replay and return to the main menu
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022