Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

Related tags

Deep Learningresa
Overview

RESA

PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection".

Our paper has been accepted by AAAI2021.

Introduction

intro

  • RESA shifts sliced feature map recurrently in vertical and horizontal directions and enables each pixel to gather global information.
  • RESA achieves SOTA results on CULane and Tusimple Dataset.

Get started

  1. Clone the RESA repository

    git clone https://github.com/zjulearning/resa.git
    

    We call this directory as $RESA_ROOT

  2. Create a conda virtual environment and activate it (conda is optional)

    conda create -n resa python=3.8 -y
    conda activate resa
  3. Install dependencies

    # Install pytorch firstly, the cudatoolkit version should be same in your system. (you can also use pip to install pytorch and torchvision)
    conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
    
    # Or you can install via pip
    pip install torch torchvision
    
    # Install python packages
    pip install -r requirements.txt
  4. Data preparation

    Download CULane and Tusimple. Then extract them to $CULANEROOT and $TUSIMPLEROOT. Create link to data directory.

    cd $RESA_ROOT
    mkdir -p data
    ln -s $CULANEROOT data/CULane
    ln -s $TUSIMPLEROOT data/tusimple

    For CULane, you should have structure like this:

    $CULANEROOT/driver_xx_xxframe    # data folders x6
    $CULANEROOT/laneseg_label_w16    # lane segmentation labels
    $CULANEROOT/list                 # data lists
    

    For Tusimple, you should have structure like this:

    $TUSIMPLEROOT/clips # data folders
    $TUSIMPLEROOT/lable_data_xxxx.json # label json file x4
    $TUSIMPLEROOT/test_tasks_0627.json # test tasks json file
    $TUSIMPLEROOT/test_label.json # test label json file
    
    

    For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.

    python scripts/generate_seg_tusimple.py --root $TUSIMPLEROOT
    # this will generate seg_label directory
  5. Install CULane evaluation tools.

    This tools requires OpenCV C++. Please follow here to install OpenCV C++. Or just install opencv with command sudo apt-get install libopencv-dev

    Then compile the evaluation tool of CULane.

    cd $RESA_ROOT/runner/evaluator/culane/lane_evaluation
    make
    cd -

    Note that, the default opencv version is 3. If you use opencv2, please modify the OPENCV_VERSION := 3 to OPENCV_VERSION := 2 in the Makefile.

Training

For training, run

python main.py [configs/path_to_your_config] --gpus [gpu_ids]

For example, run

python main.py configs/culane.py --gpus 0 1 2 3

Testing

For testing, run

python main.py c[configs/path_to_your_config] --validate --load_from [path_to_your_model] [gpu_num]

For example, run

python main.py configs/culane.py --validate --load_from culane_resnet50.pth --gpus 0 1 2 3

python main.py configs/tusimple.py --validate --load_from tusimple_resnet34.pth --gpus 0 1 2 3

We provide two trained ResNet models on CULane and Tusimple, downloading our best performed model (Tusimple: GoogleDrive/BaiduDrive(code:s5ii), CULane: GoogleDrive/BaiduDrive(code:rlwj) )

Citation

@misc{zheng2020resa,
      title={RESA: Recurrent Feature-Shift Aggregator for Lane Detection}, 
      author={Tu Zheng and Hao Fang and Yi Zhang and Wenjian Tang and Zheng Yang and Haifeng Liu and Deng Cai},
      year={2020},
      eprint={2008.13719},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023