This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Overview

Hierarchical Motion Understanding via Motion Programs (CVPR 2021)

Paper

This repository contains the official implementation of:

Hierarchical Motion Understanding via Motion Programs

full paper | short talk | long talk | project webpage

Motion Programs example

Running motion2prog

0. We start with video file and first prepare the input data

$ ffmpeg -i ${video_dir}/video.mp4 ${video_dir}/frames/%05d.jpg
$ python AlphaPose/scripts/demo_inference.py \
    --cfg AlphaPose/pretrained_models/256x192_res50_lr1e-3_1x.yaml \
    --checkpoint AlphaPose/pretrained_models/halpe26_fast_res50_256x192.pth \
    --indir ${video_dir}/frames --outdir ${video_dir}/pose_mpii_track \
    --pose_track --showbox --flip --qsize 256
$ mv ${video_dir}/pose_mpii_track/alphapose-results.json \
    ${video_dir}/alphapose-results-halpe26-posetrack.json

We packaged a demo video with necessary inputs for quickly testing our code

$ wget https://sumith1896.github.io/motion2prog/static/demo.zip
$ mv demo.zip data/  && cd data/ && unzip demo.zip && cd ..
  • We need 2D pose detection results & extracted frames of video (for visualization)

  • We support loading from different pose detector formats in the load function in lkeypoints.py.

  • We used AlphaPose with the above commands for all pose detection results.

Run motion program synthesis pipeline

1. With the data prepared, you can run the synthesis with the following command:

$ python fit.py -d data/demo/276_reg -k coco -a -x -c -p 1 -w 20 --no-acc \
--stat-thres 5 --span-thres 5 --cores 9 -r 1600 -o ./visualization/static/data/demo
  • The various options and their descriptions are explained in the fit.py file.

  • The results can be found under ./visualization/static/data/demo.

Visualizing the synthesized programs

2. We package a visualization server for visualizing the generated programs

$ cd visualization/
$ bash deploy.sh p
  • Open the directed the webpage and browse the results interactively.

Citations

If you find our code or paper useful to your research, please consider citing:

@inproceedings{motion2prog2021,
    Author = {Sumith Kulal and Jiayuan Mao and Alex Aiken and Jiajun Wu},
    Title = {Hierarchical Motion Understanding via Motion Programs},
    booktitle={CVPR},
    year={2021},
}

Checklist

Please open a GitHub issue or contact [email protected] for any issues or questions!

  • Upload pre-processed data used in paper.
  • Add for-loop synthesis layer.

Acknowledgements

We thank Karan Chadha, Shivam Garg and Shubham Goel for helpful discussions. This work is in part supported by Magic Grant from the Brown Institute for Media Innovation, the Samsung Global Research Outreach (GRO) Program, Autodesk, Amazon Web Services, and Stanford HAI for AWS Cloud Credits.

Parts of this repo use materials from SCANimate and fit.

Owner
Sumith Kulal
Insanely passionate about Computer Science.
Sumith Kulal
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022