[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Overview

Transform and Tell: Entity-Aware News Image Captioning

Teaser

This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and Tell: Entity-Aware News Image Captioning. We propose an end-to-end model which generates captions for images embedded in news articles. News images present two key challenges: they rely on real-world knowledge, especially about named entities; and they typically have linguistically rich captions that include uncommon words. We address the first challenge by associating words in the caption with faces and objects in the image, via a multi-modal, multi-head attention mechanism. We tackle the second challenge with a state-of-the-art transformer language model that uses byte-pair-encoding to generate captions as a sequence of word parts.

On the GoodNews dataset, our model outperforms the previous state of the art by a factor of four in CIDEr score (13 to 54). This performance gain comes from a unique combination of language models, word representation, image embeddings, face embeddings, object embeddings, and improvements in neural network design. We also introduce the NYTimes800k dataset which is 70% larger than GoodNews, has higher article quality, and includes the locations of images within articles as an additional contextual cue.

A live demo can be accessed here. In the demo, you can provide the URL to a New York Times article. The server will then scrape the web page, extract the article and image, and feed them into our model to generate a caption.

Please cite with the following BibTeX:

@InProceedings{Tran_2020_CVPR,
  author = {Tran, Alasdair and Mathews, Alexander and Xie, Lexing},
  title = {Transform and Tell: Entity-Aware News Image Captioning},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}

Requirements

# Install Anaconda for Python and then create a dedicated environment.
# This will make it easier to reproduce our experimental numbers.
conda env create -f environment.yml
conda activate tell

# This step is only needed if you want to use the Jupyter notebook
python -m ipykernel install --user --name tell --display-name "tell"

# Our Pytorch uses CUDA 10.2. Ensure that CUDA_HOME points to the right
# CUDA version. Chagne this depending on where you installed CUDA.
export CUDA_HOME=/usr/local/cuda-10.2

# We also pin the apex version, which is used for mixed precision training
cd libs/apex
git submodule init && git submodule update .
pip install -v --no-cache-dir --global-option="--pyprof" --global-option="--cpp_ext" --global-option="--cuda_ext" ./

# Install our package
cd ../.. && python setup.py develop

# Spacy is used to calcuate some of the evaluation metrics
spacy download en_core_web_lg

# We use nltk to tokenize the generated text to compute linguistic metrics
python -m nltk.downloader punkt

Getting Data

The quickest way to get the data is to send an email to [email protected] (where first is alasdair and last is tran) to request the MongoDB dump that contains the dataset. Alternatively, see here for instructions on how to get the data from scratch, which will take a few days.

Once we have obtained the data from the authors, which consists of two directories expt and data, you can simply put them at the root of this repo.

# If the data is download from our Cloudstor server, then you might need
# to first unzip the archives using either tar or 7z.

# First, let's start an empty local MongoDB server on port 27017. Below
# we set the cache size to 10GB of RAM. Change it depending on your system.
mkdir data/mongodb
mongod --bind_ip_all --dbpath data/mongodb --wiredTigerCacheSizeGB 10

# Next let's restore the NYTimes200k and GoodNews datasets
mongorestore --db nytimes --host=localhost --port=27017 --drop --gzip --archive=data/mongobackups/nytimes-2020-04-21.gz
mongorestore --db goodnews --host=localhost --port=27017 --drop --gzip --archive=data/mongobackups/goodnews-2020-04-21.gz

# Next we unarchive the image directories. For each dataset, you can see two
# directories: `images` and `images_processed`. The files in `images` are
# the orignal files scraped from the New York Times. You only need this
# if you want to recompute the face and object embeddings. Otherwise, all
# the experiments will use the images in `images_processed`, which have
# already been cropped and resized.
tar -zxf data/nytimes/images_processed.tar.gz -C data/nytimes/
tar -zxf data/goodnews/images_processed.tar.gz -C data/goodnews/

# We are now ready to train the models!

You can see an example of how we read the NYTimes800k samples from the MongoDB database here. Here's a minimum working example in Python:

import os
from PIL import Image
from pymongo import MongoClient

# Assume that you've already restored the database and the mongo server is running
client = MongoClient(host='localhost', port=27017)

# All of our NYTimes800k articles sit in the database `nytimes`
db = client.nytimes

# Here we select a random article in the training set.
article = db.articles.find_one({'split': 'train'})

# You can visit the original web page where this article came from
url = article['web_url']

# Each article contains a lot of fields. If you want the title, then
title = article['headline']['main'].strip()

# If you want the article text, then you will need to manually merge all
# paragraphs together.
sections = article['parsed_section']
paragraphs = []
for section in sections:
    if section['type'] == 'paragraph':
        paragraphs.append(section['text'])
article_text = '\n'.join(paragraphs)

# To get the caption of the first image in the article
pos = article['image_positions'][0]
caption = sections[pos]['text'].strip()

# If you want to load the actual image into memory
image_dir = 'data/nytimes/images_processed' # change this accordingly
image_path = os.path.join(image_dir, f"{sections[pos]['hash']}.jpg")
image = Image.open(image_path)

# You can also load the pre-computed FaceNet embeddings of the faces in the image
facenet_embeds = sections[pos]['facenet_details']['embeddings']

# Object embeddings are stored in a separate collection due to a size limit in mongo
obj = db.objects.find_one({'_id': sections[pos]['hash']})
object_embeds = obj['object_features']

Training and Evaluation

# Train the full model on NYTimes800k. This takes around 4 days on a Titan V GPU.
# The training will populate the directory expt/nytimes/9_transformer_objects/serialization
CUDA_VISIBLE_DEVICES=0 tell train expt/nytimes/9_transformer_objects/config.yaml -f

# Once training is finished, the best model weights are stored in
#   expt/nytimes/9_transformer_objects/serialization/best.th
# We can use this to generate captions on the NYTimes800k test set. This
# takes about one hour.
CUDA_VISIBLE_DEVICES=0 tell evaluate expt/nytimes/9_transformer_objects/config.yaml -m expt/nytimes/9_transformer_objects/serialization/best.th

# Compute the evaluation metrics on the test set
python scripts/compute_metrics.py -c data/nytimes/name_counters.pkl expt/nytimes/9_transformer_objects/serialization/generations.jsonl

There are also other model variants which are ablation studies. Check our paper for more details, but here's a summary:

Experiment Word Embedding Language Model Image Attention Weighted RoBERTa Location-Aware Face Attention Object Attention
1_lstm_glove GloVe LSTM
2_transformer_glove GloVe Transformer
3_lstm_roberta RoBERTa LSTM
4_no_image RoBERTa Transformer
5_transformer_roberta RoBERTa Transformer
6_transformer_weighted_roberta RoBERTa Transformer
7_trasnformer_location_aware RoBERTa Transformer
8_transformer_faces RoBERTa Transformer
9_transformer_objects RoBERTa Transformer

Acknowledgement

Owner
Alasdair Tran
Just another collection of fermions and bosons.
Alasdair Tran
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022