simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Overview

simplet5

Quickly train T5 models in just 3 lines of code + ONNX support

PyPI version License

simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quickly train your T5 models.

T5 models can be used for several NLP tasks such as summarization, QA, QG, translation, text generation, and more.

Here's a link to Medium article along with an example colab notebook

Install

pip install --upgrade simplet5

Usage

simpleT5 for summarization task Open In Collab

# import
from simplet5 import SimpleT5

# instantiate
model = SimpleT5()

# load
model.from_pretrained("t5","t5-base")

# train
model.train(train_df=train_df, # pandas dataframe with 2 columns: source_text & target_text
            eval_df=eval_df, # pandas dataframe with 2 columns: source_text & target_text
            source_max_token_len = 512, 
            target_max_token_len = 128,
            batch_size = 8,
            max_epochs = 5,
            use_gpu = True,
            outputdir = "outputs",
            early_stopping_patience_epochs = 0
            )

# load trained T5 model
model.load_model("t5","path/to/trained/model/directory", use_gpu=False)

# predict
model.predict("input text for prediction")

# need faster inference on CPU, get ONNX support
model.convert_and_load_onnx_model("path/to/T5 model/directory")
model.onnx_predict("input text for prediction")
Comments
  • Suppress the Output Models

    Suppress the Output Models

    Hello there!

    I'd like to ask if there is any possible way to eliminate all models, except for the last trained one. When I fine tune a model, it gives me X different models if I fine tune the model X epochs. I just need the last model and couldn't find a way to prevent writing those models to disk.

    Thanks!

    opened by bayismet 6
  • TypeError: forward() got an unexpected keyword argument 'cross_attn_head_mask In onnx_predict function

    TypeError: forward() got an unexpected keyword argument 'cross_attn_head_mask In onnx_predict function

    Hello, when I run the fine-tuned mt5 model under onnx, I get the following error:

    `TypeError Traceback (most recent call last) in ----> 1 model.onnx_predict(text)

    ~\AppData\Roaming\Python\Python38\site-packages\simplet5\simplet5.py in onnx_predict(self, source_text) 469 """ generates prediction from ONNX model """ 470 token = self.onnx_tokenizer(source_text, return_tensors="pt") --> 471 tokens = self.onnx_model.generate( 472 input_ids=token["input_ids"], 473 attention_mask=token["attention_mask"],

    C:\ProgramData\Anaconda3\lib\site-packages\torch\autograd\grad_mode.py in decorate_context(*args, **kwargs) 26 def decorate_context(*args, **kwargs): 27 with self.class(): ---> 28 return func(*args, **kwargs) 29 return cast(F, decorate_context) 30

    C:\ProgramData\Anaconda3\lib\site-packages\transformers\generation_utils.py in generate(self, input_ids, max_length, min_length, do_sample, early_stopping, num_beams, temperature, top_k, top_p, repetition_penalty, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, length_penalty, no_repeat_ngram_size, encoder_no_repeat_ngram_size, num_return_sequences, max_time, max_new_tokens, decoder_start_token_id, use_cache, num_beam_groups, diversity_penalty, prefix_allowed_tokens_fn, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, forced_bos_token_id, forced_eos_token_id, remove_invalid_values, synced_gpus, **model_kwargs) 1051 input_ids, expand_size=num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs 1052 ) -> 1053 return self.beam_search( 1054 input_ids, 1055 beam_scorer,

    C:\ProgramData\Anaconda3\lib\site-packages\transformers\generation_utils.py in beam_search(self, input_ids, beam_scorer, logits_processor, stopping_criteria, max_length, pad_token_id, eos_token_id, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, synced_gpus, **model_kwargs) 1788 model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) 1789 -> 1790 outputs = self( 1791 **model_inputs, 1792 return_dict=True,

    C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs) 1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1050 or _global_forward_hooks or _global_forward_pre_hooks): -> 1051 return forward_call(*input, **kwargs) 1052 # Do not call functions when jit is used 1053 full_backward_hooks, non_full_backward_hooks = [], []

    TypeError: forward() got an unexpected keyword argument 'cross_attn_head_mask'`

    I tried to downgrade transformers and onnxruntime but the error still remains.

    opened by farshadfiruzi 6
  • colab error

    colab error

    When running google colab, the line below produced error:

    model.load_model("t5","outputs/SimpleT5-epoch-2-train-loss-0.9526", use_gpu=True)

    Error: 404 Client Error: Not Found for url: https://huggingface.co/outputs/SimpleT5-epoch-2-train-loss-0.9526/resolve/main/config.json

    Please help. Thanks a lot.

    opened by yzhang-github-pub 6
  • shows object has no attribute 'convert_and_load_onnx_model'

    shows object has no attribute 'convert_and_load_onnx_model'

    Shows the error AttributeError: 'SimpleT5' object has no attribute 'convert_and_load_onnx_model' while running the example notebook provided in the repository

    https://github.com/Shivanandroy/simpleT5/blob/main/examples/simpleT5-summarization.ipynb

    opened by pradeepdev-1995 4
  • Adding logger

    Adding logger

    With this change, users can provide a PyTorch Lightning logger object to the .train() method:

    from pytorch_lightning.loggers import WandbLogger
    
    wandb_logger = WandbLogger(project="my-project", name="run-name")
    
    model.train(
        train_df=train_df,
        eval_df=eval_df,
        logger=wandb_logger
    )
    
    opened by versae 3
  • codet5 support added

    codet5 support added

    Needed to use this package for my experiemnts,

    Salesforce/codet5-base uses a roberta tokenizer hence this pull request.

    users can now specify : model.from_pretrained("codet5","Salesforce/codet5-base")

    If you want to read through codet5

    Here are the links: https://huggingface.co/Salesforce/codet5-base

    Kind regards, Mosh

    opened by mosh98 3
  • byT5 with version 0.1.2

    byT5 with version 0.1.2

    hi there, it seems that the newest version of simpleT5 does no longer work with byT5. The line elif model_type == "byt5": is commented out. The newest version of transformers seems to use a new type of tokenizer T5TokenizerFast and ByT5TokenizerFast does not exist. Any ideas about how to fix that?

    opened by kimgerdes 2
  • Is there any option for fine-tuning mt5 models instead of training from scratch?

    Is there any option for fine-tuning mt5 models instead of training from scratch?

    Hi, Thanks for the amazing simpleT5 package. I use the following script to train a mt5 model for summarization task.

    from simplet5 import SimpleT5

    model = SimpleT5()

    model.from_pretrained(model_type="mt5", model_name="google/mt5-small")

    model.train(train_df=train_df, eval_df=test_df, source_max_token_len=256, target_max_token_len=64, batch_size=8, max_epochs=3, use_gpu=True, outputdir = "outputs", early_stopping_patience_epochs = 0, )

    When I run this code, training start from scratch. My question is that is there any flag to fine-tune the mt5 model instead of training from scratch?

    opened by farshadfiruzi 2
  • Kernel dies every time when I start training the model

    Kernel dies every time when I start training the model

    Hi Shiva, Thank you very much for a such clean and neat wrapper for training ML models. I am using t5(precisely t5-small) as the base to train my model for summarization. I use the dataset using datasets from huggingface. However, everytime when I initiate the training code, the kernel dies and restarts. Any help here is much appreciated!

    Following is my code.

    Import dependencies

    %%capture
    !pip install --user simplet5==0.1.4
    !pip install transformers
    !pip install wandb
    !pip install pandas
    !pip install datasets
    !pip install --user simpletransformers
    

    Load data using datasets from huggingface

    import pandas as pd
    import warnings
    warnings.filterwarnings("ignore")
    from datasets import load_dataset
    dataset = load_dataset("scitldr")
    

    Preparing the train and eval data

    train_df = dataset["train"].to_pandas().copy()
    train_df.drop(columns=["source_labels","rouge_scores","paper_id"],inplace=True)
    train_df.rename(columns={"source":"source_text","target":"target_text"}, inplace=True)
    train_df.count() ## No NaN found - zero 1992 dataset
    
    train_df['source_text'] = train_df['source_text'].astype('str').str.rstrip(']\'')
    train_df['source_text'] = train_df['source_text'].astype('str').str.lstrip('[\'')
    train_df['target_text'] = train_df['target_text'].astype('str').str.rstrip(']\'')
    train_df['target_text'] = train_df['target_text'].astype('str').str.lstrip('[\'')
    
    train_df["source_text"]=train_df["source_text"].str.replace('\'','')
    train_df["target_text"]=train_df["target_text"].str.replace('\'','')
    train_df["source_text"]="summarize: "+train_df["source_text"]
    train_df.to_csv("train.csv")
    
    eval_df = dataset["validation"].to_pandas().copy()
    eval_df.drop(columns=["source_labels","rouge_scores","paper_id"],inplace=True)
    eval_df.rename(columns={"source":"source_text","target":"target_text"}, inplace=True)
    eval_df.count() ## No NaN found - zero 1992 dataset
    
    eval_df['source_text'] = eval_df['source_text'].astype('str').str.rstrip(']\'')
    eval_df['source_text'] = eval_df['source_text'].astype('str').str.lstrip('[\'')
    eval_df['target_text'] = eval_df['target_text'].astype('str').str.rstrip(']\'')
    eval_df['target_text'] = eval_df['target_text'].astype('str').str.lstrip('[\'')
    
    eval_df["source_text"]=train_df["source_text"].str.replace('\'','')
    eval_df["target_text"]=train_df["target_text"].str.replace('\'','')
    eval_df["source_text"]="summarize: "+train_df["source_text"]
    eval_df.to_csv("eval.csv")
    

    Loading simpleT5 and wandb_logger and finally loading the model and training code

    from simplet5 import SimpleT5
    from pytorch_lightning.loggers import WandbLogger
    wandb_logger = WandbLogger(project="ask-poc-logger")
    model = SimpleT5()
    model.from_pretrained("t5","t5-small")
    model.train(train_df=train_df[0:100], 
                eval_df=eval_df[0:100],
                source_max_token_len = 512, 
                target_max_token_len = 100,
                batch_size = 2,
                max_epochs = 3,
                use_gpu = True,
                outputdir = "outputs",
                logger = wandb_logger
                )
    

    I am running this code on the following machine. A vertex AI workbench from Google Cloud. N1-Standard-16 machine type with 16 core and 60 GB Memory. And added GPU P100. Any help is much appreciated ! Thanks in advance!

    opened by kkrishnan90 1
  • Is the task string necessary?

    Is the task string necessary?

    Hi,

    I have fine-tuned the model to write a compliment for a person, given the person's profile and it works pretty well. In the training examples, I haven't prepended the string 'summarize :' to the source_string column entries. Is it necessary (does it lead to better results) to prepend the string indicating the task?

    opened by nikogamulin 1
  • Push finished model

    Push finished model

    Is there a way of automatically pushing the checkpoints to the HuggingFace hub? I am running this mainly in Colab. Works great but often the Colab has timed out, and the checkpoints are lost.

    opened by peregilk 2
  • Unicode Charecter training issue

    Unicode Charecter training issue

    I tried to train My model for translating English to Bengali. After Training when I run the code, The output is not Unicode Bengali character.

    I Eat Rice (eng)=> আমি ভাত খাই (Bn)

    this type of data is input to the model while training. After complete, when I tested the model by inputting "I Eat Rice" I was expecting "আমি ভাত খাই" as output. But instead of this, the model gave me "Ich esse Reis." I dont know what kind of language is this. Its not related to bengali.

    opened by rahat10120141 5
  • ValueError: text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) or `List[List[str]]` (batch of pretokenized examples).

    ValueError: text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) or `List[List[str]]` (batch of pretokenized examples).

    import soundfile as sf from scipy.io import wavfile from IPython.display import Audio from transformers import Wav2Vec2ForCTC, Wav2Vec2CTCTokenizer

    import speech_recognition as sr import io from pydub import AudioSegment

    tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")

    r = sr.Recognizer() with sr.Microphone(sample_rate=16000) as source: print("speak") while True: audio = r.listen(source) data = io.BytesIO(audio.get_wav_data()) clip = AudioSegment.from_file(data) x = torch.FloatTensor(clip.get_array_of_samples()) print(x)

        inputs = tokenizer(x, sampling_rate=16000, return_tensors='pt', padding='longest').input_values
        logits = model(inputs).logits
        tokens = torch.argmax(logits, axis=-1)
        text = tokenizer.batch_decode(tokens)
    
        print('you said: ', str(text).lower())
    
    opened by Ushanjay 1
  • Saved model name not customizable

    Saved model name not customizable

    def training_epoch_end(self, training_step_outputs): """ save tokenizer and model on epoch end """ self.average_training_loss = np.round( torch.mean(torch.stack([x["loss"] for x in training_step_outputs])).item(), 4, ) path = f"{self.outputdir}/simplet5-epoch-{self.current_epoch}-train-loss-{str(self.average_training_loss)}-val-loss-{str(self.average_validation_loss)}"

    Will be very helpful if you can allow the name customizable (note the 'path' assignment).

    Btw, SimpleT5 is simply cool!

    opened by ke-lara 0
Releases(v0.1.4)
  • v0.1.4(Feb 15, 2022)

    SimpleT5 v0.1.4

    • Added support for all the pytorch-lightning supported loggers #11
    • Added support to save model only at last epoch #21
    • Added dataloader_num_workers parameter to.train( ) method to specify number of worker in train/test/val dataloader #19
    • fixed warnings and made compatible with latest transformers and pytorch-lightning
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Sep 4, 2021)

  • version-0.1.0(Jul 13, 2021)

    SimpleT5 - version 0.1.0

    • Supports ByT5 model - Thanks to @mapmeld for his contribution
    from simplet5 import SimpleT5
    model = SimpleT5()
    model.from_pretrained("byt5", "google/byt5-small")
    
    • Added precision flag to support mixed precision training
    # train
    model.train(train_df=train_df, # pandas dataframe with 2 columns: source_text & target_text
                eval_df=eval_df, # pandas dataframe with 2 columns: source_text & target_text
                source_max_token_len = 512, 
                target_max_token_len = 128,
                batch_size = 8,
                max_epochs = 5,
                use_gpu = True,
                outputdir = "outputs",
                early_stopping_patience_epochs = 0,
                precision = 32
                )
    
    Source code(tar.gz)
    Source code(zip)
Owner
Shivanand Roy
Data Scientist.
Shivanand Roy
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022