Predicting future trajectories of people in cameras of novel scenarios and views.

Overview

Pedestrian Trajectory Prediction

Predicting future trajectories of pedestrians in cameras of novel scenarios and views.

This repository contains the code and models for the following ECCV'20 paper:

SimAug: Learning Robust Representatios from Simulation for Trajectory Prediction Junwei Liang, Lu Jiang, Alexander Hauptmann

Our Pipeline

Input: could be from a streaming camera or saved videos.

Detection: we used a pre-trained model called YOLO (You Only Look Once) to perform object detection, it uses convolutional neural networks to provide real-time object detection, it is popular for its speed and accuracy.

Tracking: we used a pre-trained model called Deep SORT (Simple Online and Realtime Tracking), it uses deep learning to perform object tracking in videos. It works by computing deep features for every bounding box and using the similarity between deep features to also factor into the tracking logic. It is known to work perfectly with YOLO and also popular for its speed and accuracy.

Resizing: at this step, we get the frames and resize them to the required shape which is 1920 X 1080.

Semantic Segmentation: we used a pre-trained model called Deep Lab (Deep Labeling) an algorithm made by Google, to perform the semantic segmentation task, this model works by assigning a predicted value for each pixel in an image or video with the help of deep neural network support. It performs a pixel-wise classification where each pixel is labeled by predicted value encoding its semantic class.

SimAug Model: Simulation as Augmentation, is a novel simulation data augmentation method for trajectory prediction. It augments the representation such that it is robust to the variances in semantic scenes and camera views, it predicts the trajectory in unseen camera views.

Predicted Trajectory: The output of the proposed pipeline.

Code

Fisrt you need to install packages according to the configuration file:

$ pip install -r requirements.txt

Running on video

Then download the deeplab ADE20k model(used for Semantic Segmentation):

$ wget http://download.tensorflow.org/models/deeplabv3_xception_ade20k_train_2018_05_29.tar.gz
$ tar -zxvf deeplabv3_xception_ade20k_train_2018_05_29.tar.gz

Then download SimAug-trained model:

$ wget https://next.cs.cmu.edu/data/packed_models_eccv2020.tgz
$ tar -zxvf packed_models_eccv2020.tgz

Run the pretrained YOLOv5 & DEEPSORT

get the annotations on a sample video many_people.mp4 from yolo and deepsort + resized images to 1920 x 1080

dataset_resize,changelst , annotation = detect('many_people.mp4')

Prepare the annotation

  • get box centre x,y for each person (traj_data)
  • person_box_data : boxes coordinates for all persons
  • other_box_data : boxes of other objects in the same frame with each targeted person
traj_data, person_box_data, other_box_data  = prepared_data_sdd(annotation,changelst)

Run the segmentation model

model_path= 'deeplabv3_xception_ade20k_train/frozen_inference_graph.pb'
seg_output= extract_scene_seg(dataset_resize,model_path,every =100)

Prepare all data for the SimAug model

making npz which contanins arrays for details of the segmentation with annotations and person ids
data=To_npz(8,12,traj_data,seg_output)
np.savez("prepro_fold1/data_test.npz", **data)

Test SimAug-Trained Model

!python Code/test.py prepro_fold1/ packed_models/ best_simaug_model \
--wd 0.001 --runId 0 --obs_len 8 --pred_len 12 --emb_size 32 --enc_hidden_size 256 \
--dec_hidden_size 256 --activation_func tanh --keep_prob 1.0 --num_epochs 30 \
--batch_size 12 --init_lr 0.3 --use_gnn --learning_rate_decay 0.95 --num_epoch_per_decay 5.0 \
--grid_loss_weight 1.0 --grid_reg_loss_weight 0.5 --save_period 3000 \
--scene_h 36 --scene_w 64 --scene_conv_kernel 3 --scene_conv_dim 64 \
--scene_grid_strides 2,4 --use_grids 1,0 --val_grid_num 0 --gpuid 0 --load_best \
--save_output sdd_out.p
To Run the pipeline from here

Demo

ITI.Moving.vehicle.mp4

Results

We capture streaming video that contains 1628 frames, processing time for stages is

• Yolo & Deep SORT: 20.7 f/s

• DeepLabv3: 4.66 f/s

• SimAug: 12.8 f/s

Video_Name Grid_acc minADE minFDE
Moving-ITI 0.6098 22.132 39.271

Dependencies

• Python 3.6 ; TensorFlow 1.15.0 ; Pytorch 1.7 ; Cuda 10

Code Contributors

References

@inproceedings{liang2020simaug,
  title={SimAug: Learning Robust Representations from Simulation for Trajectory Prediction},
  author={Liang, Junwei and Jiang, Lu and Hauptmann, Alexander},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  month = {August},
  year={2020}
}
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022