YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

Overview

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

In our recent paper we propose the YourTTS model. YourTTS brings the power of a multilingual approach to the task of zero-shot multi-speaker TTS. Our method builds upon the VITS model and adds several novel modifications for zero-shot multi-speaker and multilingual training. We achieved state-of-the-art (SOTA) results in zero-shot multi-speaker TTS and results comparable to SOTA in zero-shot voice conversion on the VCTK dataset. Additionally, our approach achieves promising results in a target language with a single-speaker dataset, opening possibilities for zero-shot multi-speaker TTS and zero-shot voice conversion systems in low-resource languages. Finally, it is possible to fine-tune the YourTTS model with less than 1 minute of speech and achieve state-of-the-art results in voice similarity and with reasonable quality. This is important to allow synthesis for speakers with a very different voice or recording characteristics from those seen during training.

Audios samples

Visit our website for audio samples.

Implementation

All of our experiments were implemented on the Coqui TTS repo. (Still a PR).

Colab Demos

Demo URL
Zero-Shot TTS link
Zero-Shot VC link

Checkpoints

All the released checkpoints are licensed under CC BY-NC-ND 4.0

Model URL
Speaker Encoder link
Exp 1. YourTTS-EN(VCTK) link
Exp 1. YourTTS-EN(VCTK) + SCL link
Exp 2. YourTTS-EN(VCTK)-PT link
Exp 2. YourTTS-EN(VCTK)-PT + SCL link
Exp 3. YourTTS-EN(VCTK)-PT-FR link
Exp 3. YourTTS-EN(VCTK)-PT-FR SCL link
Exp 4. YourTTS-EN(VCTK+LibriTTS)-PT-FR SCL link

Results replicability

To insure replicability, we make the audios used to generate the MOS available here. In addition, we provide the MOS for each audio here.

To re-generate our MOS results, follow the instructions here. To predict the test sentences and generate the SECS, please use the Jupyter Notebooks available here.

Comments
  • Languages other than PT, FR, EN

    Languages other than PT, FR, EN

    As YourTTS is multilingual TTS, I think that by training datasets, it seems that other languages might be available. However, YourTTS's checkpoint structure seems distinctive. Is there any training procedures that I can refer?

    opened by papercore-dev 7
  • Issue with Input type and weight type should be the same

    Issue with Input type and weight type should be the same

    Hi,

    I am trying to train YourTTS on my own dataset. So I followed your helpful guide with the latest stable version of Coqui TTS (0.8.0).

    After computing the embeddings (on GPU) without issue, I run into this RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same.

    I have already trained a VITS model with this dataset so everything is already set up. I understood that input Tensor resides on GPU whereas weight Tensor resides on CPU but how can I solve this ? Should I downgrade to CoquiTTS 0.6.2 ?

    Here is the full traceback :

    File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1533, in fit
        self._fit()
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1517, in _fit
        self.train_epoch()
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1282, in train_epoch
        _, _ = self.train_step(batch, batch_num_steps, cur_step, loader_start_time)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1135, in train_step
        outputs, loss_dict_new, step_time = self._optimize(
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 996, in _optimize
        outputs, loss_dict = self._model_train_step(batch, model, criterion, optimizer_idx=optimizer_idx)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 954, in _model_train_step
        return model.train_step(*input_args)
      File "/home/caraduf/YourTTS/TTS/TTS/tts/models/vits.py", line 1250, in train_step
        outputs = self.forward(
      File "/home/caraduf/YourTTS/TTS/TTS/tts/models/vits.py", line 1049, in forward
        pred_embs = self.speaker_manager.encoder.forward(wavs_batch, l2_norm=True)
      File "/home/caraduf/YourTTS/TTS/TTS/encoder/models/resnet.py", line 169, in forward
        x = self.torch_spec(x)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/torch/nn/modules/container.py", line 139, in forward
        input = module(input)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/caraduf/YourTTS/TTS/TTS/encoder/models/base_encoder.py", line 22, in forward
        return torch.nn.functional.conv1d(x, self.filter).squeeze(1)
    RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
    

    Thanks for helping me out!

    opened by Ca-ressemble-a-du-fake 6
  •  Speaker Encoder train on new language

    Speaker Encoder train on new language

    Hi, Can you elaborate about the source of where you get Speaker Encoder, and how do you train it with additional languages? How do you use model Wav2Vec which trained from fairseq? on config_se.json "run_description": "resnet speaker encoder trained with commonvoice all languages dev and train, Voxceleb 1 dev and Voxceleb 2 dev". Which languages include in this CV? which version of CV in this training? Thanks.

    opened by ikcla 5
  • YourTTS_zeroshot_VC_demo.ipynb

    YourTTS_zeroshot_VC_demo.ipynb

    Hi! I am trying to run YourTTS_zeroshot_VC_demo.ipynb and there seems to be access changes to the file best_model.pth.tar I am downloading it right now and I will manually upload it, so that I can run the notebook, but could you kindly fix the access rights so that others could easily run it like it was before. Thank you in advance! image

    opened by stalevna 5
  • train our own voice model

    train our own voice model

    Hi ,

    I have found your repo very interesting. So, I am trying out this. I am curious to know about training our voice files to creating checkpoint without involvement of text(As i have seen in previous issues to take reference of coqui model training) and without altering config.json. Can you please guide us how to proceed on this further.

    opened by chandrakanthlns 4
  • Train YourTTS on another language

    Train YourTTS on another language

    Good day!

    I have several questions, could you please help?

    Do I understand correctly that if I want to train the model on another language it is better to fine tune this model (YourTTS-EN(VCTK+LibriTTS)-PT-FR SCL): https://drive.google.com/drive/folders/15G-QS5tYQPkqiXfAdialJjmuqZV0azQV Or it is better to use other checkpoints.

    How many hours of audio is needed to have appropriate quality?

    I planned to use Common Voice Corpus to fine-tune the model on a new language, however, the audio format is mp3 not wav. Do I need to convert all the audio files or I can use mp3 format. If yes, how?

    Thank you for your time in advance!

    opened by annaklyueva 4
  • Select Speakers for Zero Shot TTS

    Select Speakers for Zero Shot TTS

    Hi ,

    Firstly great work on the project with time trying to understand the repo with more clarity. Wanted to know how can I select different speakers for different sections of text .

    Thanks in advance.

    opened by dipanjannC 4
  • From which version does coqui TTS starts supporting voice conversions and cloning?

    From which version does coqui TTS starts supporting voice conversions and cloning?

    Hi @Edresson, I am fairly new into the feild so please forgive for naive question. I am trying to use voice cloning feature. I trained a model on coqui-ai version 0.6 and in that installed environment. And I am using the command below to get the cloning done but it gives error that tts command does not expect "reference_wav" tts --model_path trained_model/best_model.pth.tar --config_path trained_model/config.json --speaker_idx "icici" --out_path output.wav --reference_wav target_content/asura_10secs.wav which might be because it did not support voice conversion then. Can you please confirm? Also, the model trained on version 0.6 doesn't run with latest version and ends up in dimension mismatch error which I am assuming due to model structure change probably. Please shed some light on this, It'll be really helpful.

    opened by tieincred 3
  • finetune VC on my voice

    finetune VC on my voice

    I would like to finetune yourTTS voice conversion on my own voice, and compare it to the zero-shot model. Could you provide the finetuning procedure for VC?

    opened by odeliazavlianovSC 3
  • Exp 1. YourTTS-EN(VCTK) + SCL(speaker encoder layers are not initialized )

    Exp 1. YourTTS-EN(VCTK) + SCL(speaker encoder layers are not initialized )

    I tried to run an experiment similar to Exp 1. YourTTS-EN(VCTK) + SCL initializing use_speaker_encoder_as_loss=true, speaker_encoder_loss_alpha=9.0, speaker_encoder_config_path and speaker_encoder_model_path(downloaded them from your google disk

    So my config file is almost identical to the one you have for the experiment(I don't have fine_tuning_mode=0, but I checked and 0 means disabled, so it shouldn't affect anything. Also use_speaker_embedding=false, otherwise it complains that vectors are initialized)

    My problem is when I print out model weights keys of your model and mine I have speaker encoder layers missing. They are not initialized for some reason. Unfortunately, I don't have any ideas why this could be happening :( Could you maybe point out a direction and what could I check?

      "use_sdp": true,
        "noise_scale": 1.0,
        "inference_noise_scale": 0.667,
        "length_scale": 1,
        "noise_scale_dp": 1.0,
        "inference_noise_scale_dp": 0.8,
        "max_inference_len": null,
        "init_discriminator": true,
        "use_spectral_norm_disriminator": false,
        "use_speaker_embedding": true,
        "num_speakers": 97,
        "speakers_file": null,
        "d_vector_file": "../speaker_embeddings/new-SE/VCTK+TTS-PT+MAILABS-FR/speakers.json",
        "speaker_embedding_channels": 512,
        "use_d_vector_file": true,
        "d_vector_dim": 512,
        "detach_dp_input": true,
        "use_language_embedding": false,
        "embedded_language_dim": 4,
        "num_languages": 0,
        "use_speaker_encoder_as_loss": true,
        "speaker_encoder_config_path": "../checkpoints/Speaker_Encoder/Resnet-original-paper/config.json",
        "speaker_encoder_model_path": "../checkpoints/Speaker_Encoder/Resnet-original-paper/converted_checkpoint.pth.tar",
        "fine_tuning_mode": 0,
        "freeze_encoder": false,
        "freeze_DP": false,
        "freeze_PE": false,
        "freeze_flow_decoder": false,
        "freeze_waveform_decoder": false
    
    opened by stalevna 3
  • Zeroshot TTS notebook no longer working

    Zeroshot TTS notebook no longer working

    Hi @Edresson @WeberJulian

    the demo notebook is no longer working with the current TTS master repo.

    I'm having hard time to execute things.

    Do you intend to adjust ? thanks

    opened by vince62s 3
Owner
Edresson Casanova
Computer Science PhD Student
Edresson Casanova
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022