Python implementation of R package breakDown

Overview

pyBreakDown

Python implementation of breakDown package (https://github.com/pbiecek/breakDown).

Docs: https://pybreakdown.readthedocs.io.

Requirements

Nothing fancy, just python 3.5.2+ and pip.

Installation

Install directly from github

    git clone https://github.com/bondyra/pyBreakDown
    cd ./pyBreakDown
    python3 setup.py install  # (or use pip install . instead)

Basic usage

Load dataset

from sklearn import datasets
x = datasets.load_boston()
data = x.data
feature_names = x.feature_names
y = x.target

Prepare model

import numpy as np
from sklearn import tree
model = tree.DecisionTreeRegressor()

Train model

train_data = data[1:300,:]
train_labels=y[1:300]
model = model.fit(train_data,y=train_labels)

Explain predictions on test data

#necessary imports
from pyBreakDown.explainer import Explainer
from pyBreakDown.explanation import Explanation
#make explainer object
exp = Explainer(clf=model, data=train_data, colnames=feature_names)
#make explanation object that contains all information
explanation = exp.explain(observation=data[302,:],direction="up")

Text form of explanations

#get information in text form
explanation.text()
Feature                  Contribution        Cumulative          
Intercept = 1            29.1                29.1                
RM = 6.495               -1.98               27.12               
TAX = 329.0              -0.2                26.92               
B = 383.61               -0.12               26.79               
CHAS = 0.0               -0.07               26.72               
NOX = 0.433              -0.02               26.7                
RAD = 7.0                0.0                 26.7                
INDUS = 6.09             0.01                26.71               
DIS = 5.4917             -0.04               26.66               
ZN = 34.0                0.01                26.67               
PTRATIO = 16.1           0.04                26.71               
AGE = 18.4               0.06                26.77               
CRIM = 0.09266           1.33                28.11               
LSTAT = 8.67             4.6                 32.71               
Final prediction                             32.71               
Baseline = 0
#customized text form
explanation.text(fwidth=40, contwidth=40, cumulwidth = 40, digits=4)
Feature                                 Contribution                            Cumulative                              
Intercept = 1                           29.1                                    29.1                                    
RM = 6.495                              -1.9826                                 27.1174                                 
TAX = 329.0                             -0.2                                    26.9174                                 
B = 383.61                              -0.1241                                 26.7933                                 
CHAS = 0.0                              -0.0686                                 26.7247                                 
NOX = 0.433                             -0.0241                                 26.7007                                 
RAD = 7.0                               0.0                                     26.7007                                 
INDUS = 6.09                            0.0074                                  26.708                                  
DIS = 5.4917                            -0.0438                                 26.6642                                 
ZN = 34.0                               0.0077                                  26.6719                                 
PTRATIO = 16.1                          0.0385                                  26.7104                                 
AGE = 18.4                              0.0619                                  26.7722                                 
CRIM = 0.09266                          1.3344                                  28.1067                                 
LSTAT = 8.67                            4.6037                                  32.7104                                 
Final prediction                                                                32.7104                                 
Baseline = 0

Visual form of explanations

explanation.visualize()

png

#customize height, width and dpi of plot
explanation.visualize(figsize=(8,5),dpi=100)

png

#for different baselines than zero
explanation = exp.explain(observation=data[302,:],direction="up",useIntercept=True)  # baseline==intercept
explanation.visualize(figsize=(8,5),dpi=100)

png

Owner
MI^2 DataLab
MI^2 DataLab
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.

TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and

Ando Saabas 720 Dec 22, 2022
Model analysis tools for TensorFlow

TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on

1.2k Dec 26, 2022
An Empirical Review of Optimization Techniques for Quantum Variational Circuits

QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca

Owen Lockwood 5 Jun 28, 2022
Auralisation of learned features in CNN (for audio)

AuralisationCNN This repo is for an example of auralisastion of CNNs that is demonstrated on ISMIR 2015. Files auralise.py: includes all required func

Keunwoo Choi 39 Nov 19, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Webis 42 Aug 14, 2022
FairML - is a python toolbox auditing the machine learning models for bias.

======== FairML: Auditing Black-Box Predictive Models FairML is a python toolbox auditing the machine learning models for bias. Description Predictive

Julius Adebayo 338 Nov 09, 2022
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.3k Jan 08, 2023
Interpretability and explainability of data and machine learning models

AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase

1.2k Dec 29, 2022
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet

Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah

Alvin Wan 556 Dec 20, 2022
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve 73 Dec 12, 2022
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

Distributed (Deep) Machine Learning Community 143 Jan 07, 2023
A python library for decision tree visualization and model interpretation.

dtreeviz : Decision Tree Visualization Description A python library for decision tree visualization and model interpretation. Currently supports sciki

Terence Parr 2.4k Jan 02, 2023
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 187 Dec 27, 2022
Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" 🧠 (ICLR 2019)

Hierarchical neural-net interpretations (ACD) 🧠 Produces hierarchical interpretations for a single prediction made by a pytorch neural network. Offic

Chandan Singh 111 Jan 03, 2023
Pytorch implementation of convolutional neural network visualization techniques

Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in

Utku Ozbulak 7k Jan 03, 2023
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,

Lutz Roeder 20.9k Dec 28, 2022
Neural network visualization toolkit for tf.keras

Neural network visualization toolkit for tf.keras

Yasuhiro Kubota 262 Dec 19, 2022
Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University

Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ

M.J. Robeer 41 Aug 29, 2022