Interactive convnet features visualization for Keras

Overview

Quiver

Gitter chat

Interactive convnet features visualization for Keras

gzqll3

The quiver workflow

Video Demo

  1. Build your model in keras

    model = Model(...)
  2. Launch the visualization dashboard with 1 line of code

    quiver_engine.server.launch(model, classes=['cat','dog'], input_folder='./imgs')
  3. Explore layer activations on all the different images in your input folder.

Quickstart

Installation

    pip install quiver_engine

If you want the latest version from the repo

    pip install git+git://github.com/keplr-io/quiver.git

Usage

Take your keras model, launching Quiver is a one-liner.

    from quiver_engine import server
    server.launch(model)

This will launch the visualization at localhost:5000

Options

    server.launch(
        model, # a Keras Model

        classes, # list of output classes from the model to present (if not specified 1000 ImageNet classes will be used)

        top, # number of top predictions to show in the gui (default 5)

        # where to store temporary files generatedby quiver (e.g. image files of layers)
        temp_folder='./tmp',

        # a folder where input images are stored
        input_folder='./',

        # the localhost port the dashboard is to be served on
        port=5000,
        # custom data mean
        mean=[123.568, 124.89, 111.56],
        # custom data standard deviation
        std=[52.85, 48.65, 51.56]
    )

Development

Building from master

Check out this repository and run

cd quiver_engine
python setup.py develop

Building the Client

    cd quiverboard
    npm install
    export QUIVER_URL=localhost:5000 # or whatever you set your port to be
    npm start

Note this will run your web application with webpack and hot reloading. If you don't care about that, or are only in this section because pip install somehow failed for you, you should tell it to simply build the javascript files instead

    npm run deploy:prod

Credits

  • This is essentially an implementation of some ideas of deepvis and related works.
  • A lot of the pre/pos/de processing code was taken from here and other writings of fchollet.
  • The dashboard makes use of react-redux-starter-kit

Citing Quiver

misc{bianquiver,
  title={Quiver},
  author={Bian, Jake},
  year={2016},
  publisher={GitHub},
  howpublished={\url{https://github.com/keplr-io/quiver}},
}
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet

Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah

Alvin Wan 556 Dec 20, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

56 Jan 03, 2023
Neural network visualization toolkit for tf.keras

Neural network visualization toolkit for tf.keras

Yasuhiro Kubota 262 Dec 19, 2022
Pytorch Feature Map Extractor

MapExtrackt Convolutional Neural Networks Are Beautiful We all take our eyes for granted, we glance at an object for an instant and our brains can ide

Lewis Morris 40 Dec 07, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 187 Dec 27, 2022
JittorVis - Visual understanding of deep learning model.

JittorVis - Visual understanding of deep learning model.

182 Jan 06, 2023
⬛ Python Individual Conditional Expectation Plot Toolbox

⬛ PyCEbox Python Individual Conditional Expectation Plot Toolbox A Python implementation of individual conditional expecation plots inspired by R's IC

Austin Rochford 140 Dec 30, 2022
Algorithms for monitoring and explaining machine learning models

Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-qual

Seldon 1.9k Dec 30, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Webis 42 Aug 14, 2022
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2 (supported including English, Korean, Chinese, German and Easy to adapt for other languages)

🤪 TensorFlowTTS provides real-time state-of-the-art speech synthesis architectures such as Tacotron-2, Melgan, Multiband-Melgan, FastSpeech, FastSpeech2 based-on TensorFlow 2. With Tensorflow 2, we c

3k Jan 04, 2023
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.3k Jan 08, 2023
A Practical Debugging Tool for Training Deep Neural Networks

Cockpit is a visual and statistical debugger specifically designed for deep learning!

31 Aug 14, 2022
A collection of research papers and software related to explainability in graph machine learning.

A collection of research papers and software related to explainability in graph machine learning.

AstraZeneca 1.9k Dec 26, 2022
Visualize a molecule and its conformations in Jupyter notebooks/lab using py3dmol

Mol Viewer This is a simple package wrapping py3dmol for a single command visualization of a RDKit molecule and its conformations (embed as Conformer

Benoît BAILLIF 1 Feb 11, 2022
Model analysis tools for TensorFlow

TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on

1.2k Dec 26, 2022
tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.1) is tested on anaconda3, with PyTorch 1.5.1 / torchvision 0

Tzu-Wei Huang 7.5k Jan 07, 2023
Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

DEEL 343 Jan 02, 2023